temporal vision
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 2)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jingjing Zang ◽  
Matthias Gesemann ◽  
Jennifer Keim ◽  
Marijana Samardzija ◽  
Christian Grimm ◽  
...  

Eukaryotes generally display a circadian rhythm as an adaption to the reoccurring day/night cycle. This is particularly true for visual physiology that is directly affected by changing light conditions. Here we investigate the influence of the circadian rhythm on the expression and function of visual transduction cascade regulators in diurnal zebrafish and nocturnal mice. We focused on regulators of shut-off kinetics such as Recoverins, Arrestins, Opsin kinases, and Regulator of G-protein signaling that have direct effects on temporal vision. Transcript as well as protein levels of most analyzed genes show a robust circadian rhythm-dependent regulation, which correlates with changes in photoresponse kinetics. Electroretinography demonstrates that photoresponse recovery in zebrafish is delayed in the evening and accelerated in the morning. Functional rhythmicity persists in continuous darkness, and it is reversed by an inverted light cycle and disrupted by constant light. This is in line with our finding that orthologous gene transcripts from diurnal zebrafish and nocturnal mice are often expressed in an anti-phasic daily rhythm.


2021 ◽  
Vol 224 (15) ◽  
Author(s):  
Kristian Donner

ABSTRACT Time is largely a hidden variable in vision. It is the condition for seeing interesting things such as spatial forms and patterns, colours and movements in the external world, and yet is not meant to be noticed in itself. Temporal aspects of visual processing have received comparatively little attention in research. Temporal properties have been made explicit mainly in measurements of resolution and integration in simple tasks such as detection of spatially homogeneous flicker or light pulses of varying duration. Only through a mechanistic understanding of their basis in retinal photoreceptors and circuits can such measures guide modelling of natural vision in different species and illuminate functional and evolutionary trade-offs. Temporal vision research would benefit from bridging traditions that speak different languages. Towards that goal, I here review studies from the fields of human psychophysics, retinal physiology and neuroethology, with a focus on fundamental constraints set by early vision.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xia Hu ◽  
Yi Qin ◽  
Xiaoxiao Ying ◽  
Junli Yuan ◽  
Rong Cui ◽  
...  

PurposeAmblyopia affects not only spatial vision but also temporal vision. In this study, we aim to investigate temporal processing deficits in amblyopia.MethodsTwenty amblyopic patients (age: 27.0 ± 5.53 years, 15 males), and 25 normal observers (age: 25.6 ± 4.03 years, 15 males) were recruited in this study. Contrast thresholds in an orientation discrimination task in five target-mask stimulus onset asynchronies (SOA) conditions (16.7 ms, 33.4 ms, 50.0 ms, 83.4 ms, and ∞/no noise) were measured. An elaborated perceptual template model (ePTM) was fit to the behavioral data to derive the temporal profile of visual processing for each participant.ResultsThere were significant threshold differences between the amblyopic and normal eyes [F(1,43) = 10.6, p = 0.002] and a significant group × SOA interaction [F(2.75,118) = 4.98, p = 0.004], suggesting different temporal processing between the two groups. The ePTM fitted the data well (χ2 test, all ps > 0.50). Compared to the normal eye, the amblyopic eye had a lower template gain (p = 0.046), and a temporal window with lower peak and broader width (all ps < 0.05). No significant correlation was found between the observed temporal deficits and visual acuity in amblyopia (ps > 0.50). Similar results were found in the anisometropic amblyopia subgroup. No significant difference was found between the fellow eyes of the monocular amblyopia and the normal eyes.ConclusionAmblyopia is less efficient in processing dynamic visual stimuli. The temporal deficits in amblyopia, represented by a flattened temporal window, are likely independent of spatial vision deficits.


2021 ◽  
Author(s):  
Jingjing Zang ◽  
Matthias Gesemann ◽  
Jennifer Keim ◽  
Marijana Samardzija ◽  
Christian Grimm ◽  
...  

Eukaryotes generally display a circadian rhythm as an adaption to the reoccurring day/night cycle. This is particularly true for visual physiology that is directly affected by changing light conditions. Here we investigate the influence of the circadian rhythm on the expression and function of visual transduction cascade regulators in diurnal zebrafish and nocturnal mice. We focused on regulators of shut-off kinetics such as recoverins, arrestins, opsin kinases, and GTPase-accelerating protein that have direct effects on temporal vision. Transcript as well as protein levels of most analyzed genes show a robust circadian rhythm dependent regulation, which correlates with changes in photoresponse kinetics. Electroretinography demonstrates that photoresponse recovery in zebrafish is delayed in the evening and accelerated in the morning. This physiological rhythmicity is mirrored in visual behaviors, such as optokinetic and optomotor responses. Functional rhythmicity persists in continuous darkness, it is reversed by an inverted light cycle and disrupted by constant light. This is in line with our finding that orthologous gene transcripts from diurnal zebrafish and nocturnal mice are often expressed in an anti-phasic daily rhythm.


2020 ◽  
Vol 6 (1) ◽  
pp. 1-23
Author(s):  
Joel Pokorny ◽  
Vivianne C. Smith

We as a couple spent 50 years working in visual psychophysics of color vision, temporal vision, and luminance adaptation. We sought collaborations with ophthalmologists, anatomists, physiologists, physicists, and psychologists, aiming to relate visual psychophysics to the underlying physiology of the primate retina. This review describes our journey and reflections in exploring the visual system.


Author(s):  
Sarah E. Saint ◽  
Billy R. Hammond ◽  
Naiman A. Khan ◽  
Charles H. Hillman ◽  
Lisa M. Renzi-Hammond

2019 ◽  
Vol 11 (22) ◽  
pp. 6271 ◽  
Author(s):  
Ran Wang ◽  
Yao Jiang ◽  
Peng Su ◽  
Jing’ai Wang

Due to the effects of global warming, extreme temperature events are posing a great threat to crop yields, especially to temperature-sensitive crops such as rice. In the context of disaster risk theory, exposure is central to disaster prevention and reduction. Thus, a comprehensive analysis of crop exposure is essential to better reduce disaster effects. By combining the maximum entropy model (MaxEnt) and a multiple-criteria decision analysis (MCDA), this paper analyzed the global distribution and change in rice exposure to high temperature. The results showed the future states of rice after exposure to high temperatures. Our results are: (1) the areas of potential rice distribution zones decreased within the representative concentration pathway (RCP) scenarios RCP2.6 to RCP8.5 in MaxEnt, where the long-term (2061–2080) decreases are greater than those seen in the medium term (2041–2060). (2) In the future, the number of high temperature hazards in potential rice distribution areas increased. In the RCP8.5 scenario, the intensities of global high temperature hazards on rice were reduced because the total area of potential rice distribution zones decreased. (3) Through the view of barycenter shift, the barycenter of the global potential rice and high temperature hazard distributions showed a trend of backward motion, which meant the global rice exposure to high temperature was in a downward trend. With the background of global change, this paper has great significance for the mitigation of high temperature risk in rice and its effect on the potential security of future global rice production. Future research is warranted to concentrate on discussing more socioeconomic factors and increasing rice exposure change from the temporal vision.


2019 ◽  
Vol 19 (10) ◽  
pp. 9
Author(s):  
Matthew Dye
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document