uranyl complexes
Recently Published Documents


TOTAL DOCUMENTS

298
(FIVE YEARS 18)

H-INDEX

34
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Gerrit Schaper ◽  
Marco Wenzel ◽  
Uwe Schwarzenbolz ◽  
Johannes Steup ◽  
Felix Hennersdorf ◽  
...  

Reaction of 1,3,4,6-tetra-O-acetyl-N-(2-hydroxy)-naphthylidene glucosamine (HL(Ac)) with uranyl acetate in ethanol leads to formation of dinuclear [(UO2)2(L)2] (1). In a second step 1 is quantitatively transferred into the trinuclear oxo-bridged complex...


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256186
Author(s):  
Abeer A. Sharfalddin ◽  
Abdul-Hamid Emwas ◽  
Mariusz Jaremko ◽  
Mostafa A. Hussien

Three new uranyl complexes [(UO2)(OAc)2(CMZ)], [(UO2)(OAc)2(MP)] and [(UO2)(OAc)2(SCZ)] were synthesized and characterized by elemental analysis, FT-IR, UV-Vis spectroscopy, powder XRD analysis, and molar conductivity. The IR analysis confirmed binding to the metal ion by the sulfur and ethoxy oxygen atoms in the carbimazole (CMZ) ligand, while in the 6-mercaptopurine (MP) ligand, the sulfur and the N7 nitrogen atom of a purine coordinated binding to the metal ion. The third ligand showed a 1:1 molar ratio and bound via sulfonamide oxygen and the nitrogen of the pyrimidine ring. Analysis of the synthesized complexes also showed that acetate groups had monodentate binding to the (UO22+). Density Functional Theory (DFT) calculations at the B3LYP level showed similar structures to the experimental results. Theoretical quantum parameters predicted the reactivity of the complexes in the order, [(UO2)(OAc)2(SCZ)] > [(UO2)(OAc)2(MP)]> [(UO2)(OAc)2(CMZ)]. DNA binding studies revealed that [(UO2)(OAc)2(SCZ)] and [(UO2)(OAc)2(CMZ)] have the highest binding constant (Kb) among the uranyl complexes. Additionally, strong binding of the MP and CMZ metal complexes to human serum albumin (HSA) were observed by both absorbance and fluorescence approaches. The antibacterial activity of the complexes was also evaluated against four bacterial strains: two gram-negative; Escherichia coli and Klebsiella pneumonia, and two gram-positive; Staphylococcus aureus and Streptococcus mutans. [(UO2)(OAc)2(MP)] had the greatest antibacterial activity against Klebsiella pneumonia, the gram-positive bacteria, with even higher activity than the standard antibiotic. In vitro cytotoxicity tests were also performed against three human cancer lines, and revealed the most cytotoxic complexes to be [(UO2)(OAc)2(SCZ)], which showed moderate activity against a colon cancer cell line. Thus, uranyl addition enhances the antibacterial and anticancer properties of the free ligands.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1138
Author(s):  
Hanan B. Howsaui ◽  
Amal S. Basaleh ◽  
Magda H. Abdellattif ◽  
Walid M. I. Hassan ◽  
Mostafa A. Hussien

Three novel 2-aminopyrazine Schiff bases derived from salicylaldehyde derivatives and their uranyl complexes were synthesized and characterized by elemental analysis, UV-vis, FTIR, molar conductance, and thermal gravimetric analysis (TGA). The proposed structures were optimized using density functional theory (DFT/B3LYP) and 6–311G ∗(d,p) basis sets. All uranyl complexes are soluble in DMSO and have low molar conductance, which indicates that all the complexes are nonelectrolytes. The DNA binding of those Schiff bases and their uranyl complexes was studied using UV-vis spectroscopy, and screening of their ability to bind to calf thymus DNA (CT-DNA) showed that the complexes interact with CT-DNA through an intercalation mode, for which the Kb values ranged from 1 × 106 to 3.33 × 105 M−1. The anticancer activities of the Schiff base ligands and their uranyl complexes against two ovarian (Ovcar-3) and melanoma cell lines (M14) were investigated, and the results indicated that uranyl complexes exhibit better results than the Schiff base ligands. Molecular docking identified the distance, energy account, type, and position of links contributing to the interactions between these complexes and two different cancer proteins (3W2S and 2OPZ).


2021 ◽  
Author(s):  
Dominique Brager ◽  
Aaron Nicholas ◽  
Mark Schofield ◽  
Christopher Cahill

2020 ◽  
Vol 39 (6) ◽  
pp. 783-787 ◽  
Author(s):  
Arnab K. Maity ◽  
Robert J. Ward ◽  
D. M. Ramitha Y. P. Rupasinghe ◽  
Matthias Zeller ◽  
Justin R. Walensky ◽  
...  
Keyword(s):  

2020 ◽  
Vol 28 (2) ◽  
pp. 295-306
Author(s):  
Štefan Ferenc ◽  
Eva Hoppanová ◽  
Richard Kopáčik ◽  
Tomáš Mikuš ◽  
Šimon Budzák

Occurrence of infiltration, stratiform U-Cu mineralization Spišská Teplica - Vápenica-Vysová is located approximately 7.8 km SW from the district town Poprad and 4.3 km SW from the centre of Spišská Teplica village (Slovak Republic). Primary U-Cu mineralization is bound to arkosic sandstones with abundant coalified fragments of higher plants (Kravany Beds, Upper Permian, Hronicum Unit) and consists of uraninite and pyrite. The chalcopyrite and Cu-S mineral phase (digenite?, roxbyite?) form inclusions in clastic fluorapatite and zircon. Among supergene minerals, malachite and goethite are absolutely dominant, azurite, zálesíite and baryte are less represented. Phosphate, probably of the florencite group, and acanthite were only rarely found. Supergene uranyl minerals were not detected. Their lack, or their weak development in all uranium deposits in Kozie Chrbty Mts. can be explained as follows: during the weathering of primary ores, the cation UO22+ is released from uraninite and coffinite into supergene solutions (uranyl complexes). However, these solutions come into almost immediate contact with fragments of coalified flora (especially in the case of rich U ores), where UO22+ binds to the organic uranyl complexes (complexation). Only a relatively small part of uranyl cation escapes from this geochemical trap, and in that case supergene uranium minerals may precipitate.


2020 ◽  
Vol 8 (2) ◽  
pp. 1-6
Author(s):  
Oleksandr Vashchenko ◽  
Dmytro Khomenko ◽  
Roman Doroschuk ◽  
Ilona Raspertova ◽  
Rostyslav Lampeka

Two new uranyl complexes with the molecular formula [(UO2)(H2L1)](СH3OH) and [(UO2)(H3L2)](СH3OH) {H4L1 = 2-[5-[[5-[[5-(2-pyridyl)-1H-1,2,4-triazol-3‑yl]methyl]-1H-1,2,4-triazol-3-yl]methyl]-1H-1,2,4-triazol-3-yl]phenol and H5L2 = 2-[5-[[5-[[5-[[5-(2-pyridyl)-1H-1,2,4‑triazol-3-yl]methyl]-1H-1,2,4-triazol-3-yl]methyl]-1H-1,2,4-triazol-3-yl]methyl]-1H-1,2,4-triazol-3-yl]phenol)} have been synthesized. All compounds have been characterized by NMR and IR spectroscopy. With H4L1 and H5L2 uranyl ion forms mononuclear complexes. In [(UO2)(H3L2)](СH3OH) pyridyl nitrogen was uncoordinated and bonding of H5L2 was realized only through phenol oxygen and N4-nitrogens of triazole cycles.


Sign in / Sign up

Export Citation Format

Share Document