scholarly journals New reaction paths for advanced SiAlON/TiN composites

2021 ◽  
Author(s):  
◽  
Pauline Calloch

<p>This thesis demonstrates how selected ceramic additives, including titanium nitride (TiN), impact upon the “chemistry ↔ microstructure ↔ properties” relationship as it applies to composites in the generic Sialon-TiN composite field. Examination and optimisation of this feedback loop enables control of industrially important thermal, electrical and engineering properties of β-Sialon based ceramics.  The effects of a range of additives on the nitridation and sintering of β-Sialon composite bodies have been studied and the chemical and mechanical properties of the sintered bodies have been measured. The additives can be divided in three groups: nitridation additives which improve the yield and the rate of the reaction; sintering aids; and additives that improve resistance to thermal shock. A suite of additives consisting of a mixture of calcium aluminate cement, yttrium aluminium garnet and boron nitride was found to deliver an optimum set of mechanical properties with a fracture toughness achieved of over 4 MPa.m-1/2.  This thesis also reports a new reaction path for the formation of a β-Sialon/TiN composite by the reaction bonding of aluminium powder coated with nanosized titania. In this novel technique, the aluminium reacts under an inert atmosphere with titania to form alumina and a TixAly intermediate which is then nitrided to form aluminium nitride and titanium nitride. The addition of a suitable silicon phase enables the formation of a β-Sialon phase under nitrogen at high temperature. The TiN was added in the range 1 to 10 wt% (0.6 to 6 vol%).  The effects of milling time on the aluminium powder particle size distribution and reactivity have been studied, with a minimum of two days milling time required to modify the particle shape and reduce melting coagulation during firing. Firing parameters have been optimised, using XRD and MAS-NMR to monitor the samples’ composition and SEM to observe their microstructure. The reduction of titania by aluminium was completed at 900 ºC for 4 hours in an argon atmosphere and the nitridation of the titanium aluminide at 1400 ºC for 3 hours in a nitrogen flow. The nitridation and sintering of the β-Sialon/TiN composite were both performed in nitrogen at 1400 ºC and 1600 ºC, respectively. A low level of addition of TiN (1 wt%) has shifted the composition toward the AlN corner of the Sialon behaviour diagram, forming α-Sialon and AlN polytypes. Other levels of addition in the studied range formed a dense β-Sialon/TiN composite. The TiN inclusions are found at the grain boundaries but are of insufficient volume fraction to form a continuous network in the Sialon matrix.  Mechanical and electrical properties of the newly fabricated β-Sialon/TiN composites have been measured. These properties were generally improved by the highest levels of TiN addition: Young’s modulus (up to 210 GPa), hardness (up to 17.7 GPa), fracture toughness (up to 3.3 MPa.m-1/2) and compressive strength (up to 188 MPa). However the presence of TiN had no impact on the resistance to thermal shock and electrical conductivity of the β−Sialon.  Finally, the oxidation process for β-Sialon/TiN composites has been observed by a combination of XRD, SEM and Ion Beam Analysis techniques. The results show early enrichment of yttrium and titanium in the first 0.1 μm of the samples’ surface; replacement of nitrogen by oxygen to form crystalline phases on the surface and in the glassy phase up to 1.5 μm deep; and, major crystalline and chemical changes in an outer layer of about 100 μm thickness at 1200 ºC. The partial depletion of SiO species from the external sample surface during sintering firing leaves this surface zone more vulnerable to oxidation than the protected body of the ceramic. The oxidation of TiN forms a TiO₂ skin which acts as a protection from further oxidation.  The outcome of this research is a novel reaction path to fabricate new advanced Sialon composites and an improved understanding of the effect of a broad range of additives on the nitridation and sintering behaviour of β-Sialon and β-Sialon/TiN composites.</p>

2021 ◽  
Author(s):  
◽  
Pauline Calloch

<p>This thesis demonstrates how selected ceramic additives, including titanium nitride (TiN), impact upon the “chemistry ↔ microstructure ↔ properties” relationship as it applies to composites in the generic Sialon-TiN composite field. Examination and optimisation of this feedback loop enables control of industrially important thermal, electrical and engineering properties of β-Sialon based ceramics.  The effects of a range of additives on the nitridation and sintering of β-Sialon composite bodies have been studied and the chemical and mechanical properties of the sintered bodies have been measured. The additives can be divided in three groups: nitridation additives which improve the yield and the rate of the reaction; sintering aids; and additives that improve resistance to thermal shock. A suite of additives consisting of a mixture of calcium aluminate cement, yttrium aluminium garnet and boron nitride was found to deliver an optimum set of mechanical properties with a fracture toughness achieved of over 4 MPa.m-1/2.  This thesis also reports a new reaction path for the formation of a β-Sialon/TiN composite by the reaction bonding of aluminium powder coated with nanosized titania. In this novel technique, the aluminium reacts under an inert atmosphere with titania to form alumina and a TixAly intermediate which is then nitrided to form aluminium nitride and titanium nitride. The addition of a suitable silicon phase enables the formation of a β-Sialon phase under nitrogen at high temperature. The TiN was added in the range 1 to 10 wt% (0.6 to 6 vol%).  The effects of milling time on the aluminium powder particle size distribution and reactivity have been studied, with a minimum of two days milling time required to modify the particle shape and reduce melting coagulation during firing. Firing parameters have been optimised, using XRD and MAS-NMR to monitor the samples’ composition and SEM to observe their microstructure. The reduction of titania by aluminium was completed at 900 ºC for 4 hours in an argon atmosphere and the nitridation of the titanium aluminide at 1400 ºC for 3 hours in a nitrogen flow. The nitridation and sintering of the β-Sialon/TiN composite were both performed in nitrogen at 1400 ºC and 1600 ºC, respectively. A low level of addition of TiN (1 wt%) has shifted the composition toward the AlN corner of the Sialon behaviour diagram, forming α-Sialon and AlN polytypes. Other levels of addition in the studied range formed a dense β-Sialon/TiN composite. The TiN inclusions are found at the grain boundaries but are of insufficient volume fraction to form a continuous network in the Sialon matrix.  Mechanical and electrical properties of the newly fabricated β-Sialon/TiN composites have been measured. These properties were generally improved by the highest levels of TiN addition: Young’s modulus (up to 210 GPa), hardness (up to 17.7 GPa), fracture toughness (up to 3.3 MPa.m-1/2) and compressive strength (up to 188 MPa). However the presence of TiN had no impact on the resistance to thermal shock and electrical conductivity of the β−Sialon.  Finally, the oxidation process for β-Sialon/TiN composites has been observed by a combination of XRD, SEM and Ion Beam Analysis techniques. The results show early enrichment of yttrium and titanium in the first 0.1 μm of the samples’ surface; replacement of nitrogen by oxygen to form crystalline phases on the surface and in the glassy phase up to 1.5 μm deep; and, major crystalline and chemical changes in an outer layer of about 100 μm thickness at 1200 ºC. The partial depletion of SiO species from the external sample surface during sintering firing leaves this surface zone more vulnerable to oxidation than the protected body of the ceramic. The oxidation of TiN forms a TiO₂ skin which acts as a protection from further oxidation.  The outcome of this research is a novel reaction path to fabricate new advanced Sialon composites and an improved understanding of the effect of a broad range of additives on the nitridation and sintering behaviour of β-Sialon and β-Sialon/TiN composites.</p>


2011 ◽  
Vol 43 (3) ◽  
pp. 289-294 ◽  
Author(s):  
J. Zhu ◽  
L. Ye ◽  
F. Wang

A Ti3AlC2/Al2O3 nanocomposite was synthesized using Ti, Al, C and TiO2 as raw materials by a novel combination of high-energy milling and hot pressing. The reaction path of the 3Ti-8C-16Al-9TiO2 mixture of powders was investigated, and the results show that the transitional phases TiC, TixAly and Al2O3 are formed in high-energy milling first, and then TixAly is transformed to the TiAl phase during the hot pressing. Finally, a reaction between TiC and TiAl occurs to produce Ti3AlC2 and the nanosized Ti3AlC2/Al2O3 composite is synthesized. The Ti3AlC2/Al2O3 composite possessed a good combination of mechanical properties with a hardness of 6.0 GPa, a flexural strength of 600 MPa, and a fracture toughness (K1C) of 5.8 MPa?m1/2. The strengthening and toughening mechanisms were also discussed.


Author(s):  
Mohan Prasad Manoharan ◽  
Amit Desai ◽  
Amanul Haque

Thin film specimens of titanium - titanium nitride multilayer erosion resistant coating were prepared using liftout technique in Focused Ion Beam - Scanning Electron Microscope (SEM). The fracture toughness of the thin film specimen was measured in situ using a cantilever bending experiment in SEM to be 11.33 MPa/m0.5, twice as much as conventional TiN coatings. Ti–TiN multi-layer coatings are part of a new class of advanced erosion resistant coatings and this paper discusses an experimental technique to measure the fracture toughness of these coatings.


2013 ◽  
Vol 589-590 ◽  
pp. 584-589
Author(s):  
Hui Jun Zhou ◽  
Chuan Zhen Huang ◽  
Bin Zou ◽  
Han Lian Liu ◽  
Hong Tao Zhu ◽  
...  

In this study, titanium carbonitride (Ti(C,N)) based cermets were prepared by submicron particles, sintered in a vacuum and hot-pressing furnace. And the effect of different ball-milling time (36 h, 48 h, 60 h and 72 h, respectively, mostly aimed for mixing) on the mechanical properties of Ti(C,N)-based cermets, including transverse rupture strength (TRS), Vickers hardness (HV20), fracture toughness (KIC) and microstructure were investigated. The results showed that the TRS, hardness and fracture toughness were all improved with an increase in ball-milling time (not more than 60 h). Scanning electron microscopy (SEM) investigations on the microstructure of cermets with different ball-milling time revealed that the compound powders were not very well-distributed as a whole and there were coarse hard phase grains, but the microstructure was very homogeneous in parts, and the microstructure of cermets with a ball-milling time of 60 h is relatively more homogeneous. So a refinement to Ti(C,N) raw particles is needed in later studies.


2007 ◽  
Vol 336-338 ◽  
pp. 1251-1253
Author(s):  
Ke Jian ◽  
Zhao Hui Chen ◽  
Qing Song Ma ◽  
Hai Feng Hu

SR-249, a kind of polysiloxane (PSO), was used as the precursor for the first time to fabricate carbon fiber cloth reinforced silicon oxycarbide (2D Cf/Si-O-C) composites. The cure and pyrolysis of the SR-249 as well as the mechanical properties, oxidation and thermal shock behavior of the composites were investigated in the paper. The flexural strength and fracture toughness of the composites reached 217.6 MPa and 12.5 MPa·m1/2, respectively. After soaked at 1300°C under the static air for 10 min, the composites retained 58.5% flexural strength and 64.5% fracture toughness. The thermal shock behavior of the composites was studied by water quenched method. The composites retained 49.3% flexural strength and 47.4% fracture toughness after 10 times of quenching from 1200 to 20°C.


2009 ◽  
Vol 1224 ◽  
Author(s):  
Tetsuya Kusuno ◽  
Yusuke Shimada ◽  
Mitsuhiro Matsuda ◽  
Masaaki Otsu ◽  
Kazuki Takashima ◽  
...  

AbstractNb-Ti-Ni alloy is one of the candidates for hydrogen permeation membranes. The hydrogen permeability of a membrane depends on its thickness, and mechanical properties such as the fracture toughness of the membrane are important to ensure reliability and durability. In the present work, micro-mechanical tests have been carried out for melt-spun Nb-Ti-Ni thin films consisting of amorphous and nano-crystalline phases. The relationship between the mechanical properties of the melt-spun films and the microstructural changes occurring in the films due to heat treatment has been also discussed. The Nb-Ti-Ni alloy thin films were prepared by the melt-spun technique and then heat-treated at 873-1173 K. Micro-sized cantilever specimens with dimensions of 10 × 10 × 50 μm3 were prepared by focused ion beam (FIB) machining. Fracture tests were carried out using a mechanical testing machine for the micro-sized specimens; the testing machine was developed by us. In addition, microstructures were observed by transmission electron microscopy (TEM). The fracture toughness (KQ) value decreased up to 823 K, and it increased above 1173 K. The specimen heat-treated above 1173 K showed ductile fracture. The fracture morphology of the specimen heat-treated up to 1023 K showed grain boundary fracture characteristics, and that of the specimen heat-treated at 1173 K changed to transgranular fracture.


2020 ◽  
Vol 10 (19) ◽  
pp. 6674
Author(s):  
Matteo Lilli ◽  
Fabrizio Sarasini ◽  
Lorenzo Di Fausto ◽  
Carlos González ◽  
Andrea Fernández ◽  
...  

The disposal of fibre reinforced composite materials is a problem widely debated in the literature. This work explores the ability to restore the mechanical properties of thermally conditioned basalt fibres through chemical treatments. Inorganic acid (HF) and alkaline (NaOH) treatments proved to be effective in regenerating the mechanical strength of recycled basalt fibres, with up to 94% recovery of the strength on treatment with NaOH. In particular, HF treatment proved to be less effective compared to NaOH, therefore pointing towards a more environmentally sustainable approach considering the disposal issues linked to the use of HF. Moreover, the strength regeneration was found to be dependent on the level of temperature experienced during the thermal treatment process, with decreasing effectiveness as a function of increasing temperature. SEM analysis of the fibres’ lateral surfaces suggests that surface defects removal induced by the etching reaction is the mechanism controlling recovery of fibre mechanical properties. In addition, studies on the fracture toughness of the regenerated single fibres were carried out, using focussed ion beam (FIB) milling technique, to investigate whether any structural change in the bulk fibre occurred after thermal exposure and chemical regeneration. A significant increase in the fracture toughness for the regenerated fibres, in comparison with the as-received and heat-treated basalt ones, was measured.


1996 ◽  
Vol 438 ◽  
Author(s):  
F. Namavar ◽  
J. Haupt ◽  
E. Tobin ◽  
H. Karimy ◽  
J. Trogolo ◽  
...  

AbstractTypical high-temperature thin-film deposition techniques are not suitable for certain substrates such as polymers and thermally-sensitive steels. In this work, ion beam assisted deposition (IBAD) was used to deposit ceramic and metallic films at temperatures below 150°C with nanocrystalline (< 100Å diameter) grain size. Nanoindentation studies of these films have shown hardnesses 50 to 100% greater than larger-grained films and, in some cases, fracture toughness approaching that of Si3N4.By combining chromium evaporation with nitrogen beam bombardment, hard, adherent CrN films without any porosity have been produced at low temperatures with a N/Cr arrival ratio of about 1. The grain size is typically smaller than 100Å and hardness is typically higher than 25 GPa. For a N/Cr arrival ratio slightly less than 1, we observed possible grain boundary porosity. However, even with porosity, hardness is typically 20 to 24 GPa for grain sizes smaller than 100Å. For a N/Cr arrival ratio of 1/4 we deposited elemental Cr with a grain size of 300 to 500Å and a hardness greater than that of silicon (12 GPa). Using Ar ions and a N backfill, we produced elemental Cr containing a mixture of coarse (120 to 150Å) and fine (25 to 30Å) grains. For high-temperature deposition of CrN, the grain size increases (200 to 600Å) with a noticeable decrease in hardness. Mechanical properties of CrN are greatly influenced by impurities, as well as by surface conditioning of the substrate.TiN films having gold color and grain sizes from 50 to 1000Å have been produced at low temperatures. Nanoindentation measurements of hardness and fracture toughness indicate that impurity-free TiN (with grains smaller than 100Å) has a hardness higher than 25 GPa and a fracture toughness close to that of Si3N4, but with higher wear resistance. Mechanical properties of our TiN films are greatly influenced by impurities, particularly oxygen, although it does not influence the gold color of TiN.


2021 ◽  
Author(s):  
Zi-bo Niu ◽  
BingZu Wang ◽  
Lijun Pan ◽  
Daxin Li ◽  
Dechang Jia ◽  
...  

Abstract In this work, resin derived carbon coating was prepared on carbon fibers by polymer impregnation pyrolysis method (PIP), and then Cf/SiBCN composites were prepared by hot pressing process. The effects of sintering densification and fiber coating on microstructure, mechanical properties, thermal shock resistance, and failure mechanisms of the composites were studied. Fiber bridging hinders the sintering densification, causing more defects in fiber-dense area and lower strength. However, higher sintering temperature (1800-2000℃) can improve mechanical properties significantly, including bending strength, vickers hardness, and elastic module, because further sintering densification enhances matrix strength and fiber/matrix bonding strength, while the change of fracture toughness is not obvious (2.24-2.38 MPa·m1/2) due to counteraction of higher debonding resistance and less pull-out length. However, fiber coating improves fracture toughness greatly via protecting carbon fibers from chemical corrosion and damage of thermal stress and external stress. Due to lower coefficient of thermal expansion, lower fiber loading ratio, less stress concentration at the fiber/matrix interface and better defect healing effect, lower sintering temperature favor thermal shock resistance of composites and thermal shock recession mechanisms are the damage of interface.


2016 ◽  
Vol 368 ◽  
pp. 107-110 ◽  
Author(s):  
Jiří Buršík ◽  
Ivo Kuběna ◽  
Vilma Buršíková ◽  
Pavel Souček ◽  
Lukáš Zábranský ◽  
...  

X-B-C (X=Mo, Ta) layers prepared by magnetron sputtering were tested. Mechanical properties were characterized by means of nanoindentation experiments in both the static and the dynamic loading regime. The results were correlated with observations of the microstructure under indentation prints by means of scanning and transmission electron microscopy on cross sections prepared using a focussed ion beam. An excellent fracture resistance of prepared nanostructured coatings was found.


Sign in / Sign up

Export Citation Format

Share Document