scholarly journals A Relativistic Toda Lattice Hierarchy, Discrete Generalized (m,2N−m)-Fold Darboux Transformation and Diverse Exact Solutions

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2315
Author(s):  
Meng-Li Qin ◽  
Xiao-Yong Wen ◽  
Manwai Yuen

This paper investigates a relativistic Toda lattice system with an arbitrary parameter that is a very remarkable generalization of the usual Toda lattice system, which may describe the motions of particles in lattices. Firstly, we study some integrable properties for this system such as Hamiltonian structures, Liouville integrability and conservation laws. Secondly, we construct a discrete generalized (m,2N−m)-fold Darboux transformation based on its known Lax pair. Thirdly, we obtain some exact solutions including soliton, rational and semi-rational solutions with arbitrary controllable parameters and hybrid solutions by using the resulting Darboux transformation. Finally, in order to understand the properties of such solutions, we investigate the limit states of the diverse exact solutions by using graphic and asymptotic analysis. In particular, we discuss the asymptotic states of rational solutions and exponential-and-rational hybrid solutions graphically for the first time, which might be useful for understanding the motions of particles in lattices. Numerical simulations are used to discuss the dynamics of some soliton solutions. The results and properties provided in this paper may enrich the understanding of nonlinear lattice dynamics.

Author(s):  
Meng-Li Qin ◽  
Xiao-Yong Wen ◽  
Cui-Lian Yuan

Under consideration is a modified Toda lattice system with a perturbation parameter, which may describe the particle motion in a lattice. With the aid of symbolic computation Maple, the discrete generalized [Formula: see text]-fold Darboux transformation (DT) of this system is constructed for the first time. Different types of exact solutions are derived by applying the resulting DT through choosing different [Formula: see text]. Specifically, standard soliton solutions, rational solutions and their mixed solutions are given via the [Formula: see text]-fold DT, [Formula: see text]-fold DT and [Formula: see text]-fold DT, respectively. Limit states of various exact solutions are analyzed via the asymptotic analysis technique. Compared with the known results, we find that the asymptotic states of mixed solutions of standard soliton and rational solutions are consistent with the asymptotic analysis results of solitons and rational solutions alone. Soliton interaction and propagation phenomena are shown graphically. Numerical simulations are used to explore relevant soliton dynamical behaviors. These results and properties might be helpful for understanding lattice dynamics.


Author(s):  
Zhiguo Xu

Starting from a more generalized discrete [Formula: see text] matrix spectral problem and using the Tu scheme, some integrable lattice hierarchies (ILHs) are presented which include the well-known relativistic Toda lattice hierarchy and some new three-field ILHs. Taking one of the hierarchies as example, the corresponding Hamiltonian structure is constructed and the Liouville integrability is illustrated. For the first nontrivial lattice equation in the hierarchy, the [Formula: see text]-fold Darboux transformation (DT) of the system is established basing on its Lax pair. By using the obtained DT, we generate the discrete [Formula: see text]-soliton solutions in determinant form and plot their figures with proper parameters, from which we get some interesting soliton structures such as kink and anti-bell-shaped two-soliton, kink and anti-kink-shaped two-soliton and so on. These soliton solutions are much stable during the propagation, the solitary waves pass through without change of shapes, amplitudes, wave-lengths and directions. Finally, we derive infinitely many conservation laws of the system and give the corresponding conserved density and associated flux formulaically.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Xianbin Wu ◽  
Weiguo Rui ◽  
Xiaochun Hong

We find an interesting phenomenon that the discrete system appearing in a reference can be reduced to the old integrable system given by Merola, Ragnisco, and Tu in another reference. Differing from the works appearing in the above two references, a new discrete integrable system is obtained by the generalized Ablowitz-Ladik hierarchy; the Darboux transformation of this new discrete integrable system is established further. As applications of this Darboux transformation, different kinds of exact solutions of this new system are explicitly given. Investigatingthe properties of these exact solutions, we find that these exact solutions are not pure soliton solutions, but their dynamic characteristics are very interesting.


2009 ◽  
Vol 06 (04) ◽  
pp. 569-583 ◽  
Author(s):  
M. A. ABDOU

An extend of He's homotopy perturbation method (HPM) is used for finding a new approximate and exact solutions of nonlinear difference differential equations arising in mathematical physics. To illustrate the effectiveness and the advantage of the proposed method, two models of nonlinear difference equations of special interest in physics are chosen, namely, Ablowitz–Ladik lattice equations and Relativistic Toda lattice difference equations. Comparisons are made between the results of the proposed method and exact solutions. The results show that the HPM is a attracted method in solving the differential difference equations (DDEs). The proposed method will become a much more interesting method for solving nonlinear DDEs in science and engineering.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jun Su ◽  
Genjiu Xu

The Wronskian technique is used to investigate a (3+1)-dimensional generalized BKP equation. Based on Hirota’s bilinear form, new exact solutions including rational solutions, soliton solutions, positon solutions, negaton solutions, and their interaction solutions are formally derived. Moreover we analyze the strangely mechanical behavior of the Wronskian determinant solutions. The study of these solutions will enrich the variety of the dynamics of the nonlinear evolution equations.


Sign in / Sign up

Export Citation Format

Share Document