elongational flows
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 6)

H-INDEX

24
(FIVE YEARS 1)

Author(s):  
Christian J. Spieker ◽  
Gábor Závodszky ◽  
Clarisse Mouriaux ◽  
Max van der Kolk ◽  
Christian Gachet ◽  
...  

AbstractThe emerging profile of blood flow and the cross-sectional distribution of blood cells have far reaching biological consequences in various diseases and vital internal processes, such as platelet adhesion. The effects of several essential blood flow parameters, such as red blood cell free layer width, wall shear rate, and hematocrit on platelet adhesion were previously explored to great lengths in straight geometries. In the current work, the effects of channel curvature on cellular blood flow are investigated by simulating the accurate cellular movement and interaction of red blood cells and platelets in a half-arc channel for multiple wall shear rate and hematocrit values. The results show significant differences in the emerging shear rate values and distributions between the inner and outer arc of the channel curve, while the cell distributions remain predominantly uninfluenced. The simulation predictions are also compared to experimental platelet adhesion in a similar curved geometry. The inner side of the arc shows elevated platelet adhesion intensity at high wall shear rate, which correlates with increased shear rate and shear rate gradient sites in the simulation. Furthermore, since the platelet availability for binding seems uninfluenced by the curvature, these effects might influence the binding mechanics rather than the probability. The presence of elongational flows is detected in the simulations and the link to increased platelet adhesion is discussed in the experimental results.


Author(s):  
Vishal Das ◽  
AK Pandey ◽  
DN Tripathi ◽  
NE Prasad

In present study, rheological properties of polypropylene impact copolymer (PPcp) and polyolefin elastomer (POE) blend melts were evaluated on a capillary rheometer under shear and elongational flows. The flow and melt elastic properties (die swell and first normal stress difference) studied at varied extrusion conditions were correlated with blend morphology and elastomer content by means of image analysis and theoretical models. Dispersed particle break-up and coalescence were observed to be influenced by POE content and the viscosities of the constituent polymers which were in turn affected by the capillary extrusion conditions (shear rate in particular). The blend melts demonstrated typical pseudoplastic behavior obeying Cross model under shear flow. The elongational flow also corroborated well with the shear flow behavior. All the blends illustrated prominent dependence of melt elastic properties on POE content and the capillary extrusion conditions. The melt elastic properties were also found to critically rely on the inter-particle distance of the POE phase.


2020 ◽  
Vol 53 (17) ◽  
pp. 7389-7398 ◽  
Author(s):  
Beatrice W. Soh ◽  
Alexander R. Klotz ◽  
Patrick S. Doyle
Keyword(s):  

2020 ◽  
Vol 4 (3) ◽  
pp. 96
Author(s):  
Susanne Katrin Kugler ◽  
Argha Protim Dey ◽  
Sandra Saad ◽  
Camilo Cruz ◽  
Armin Kech ◽  
...  

The mechanical performance of fiber reinforced polymers is dependent on the process-induced fiber orientation. In this work, we focus on the prediction of the fiber orientation in an injection-molded short fiber reinforced thermoplastic part using an original multi-scale modeling approach. A particle-based model developed for shear flows is extended to elongational flows. This mechanistic model for elongational flows is validated using an experiment, which was conducted for a long fiber reinforced polymer. The influence of several fiber descriptors and fluid viscosity on fiber orientation under elongational flow is studied at the micro-scale. Based on this sensitivity analysis, a common parameter set for a continuum-based fiber orientation macroscopic model is defined under elongational flow. We then develop a novel flow-dependent macroscopic fiber orientation, which takes into consideration the effect of both elongational and shear flow on the fiber orientation evolution during the filling of a mold cavity. The model is objective and shows better performance in comparison to state-of-the-art fiber orientation models when compared to μCT-based fiber orientation measurements for several industrial parts. The model is implemented using the simulation software Autodesk Moldflow Insight Scandium® 2019.


2019 ◽  
Vol 52 (12) ◽  
pp. 4610-4616 ◽  
Author(s):  
Giovanni Ianniruberto ◽  
Antonio Brasiello ◽  
Giuseppe Marrucci
Keyword(s):  

Author(s):  
Pavlos S. Stephanou ◽  
Martin Kröger

We have recently solved the tumbling-snake model for concentrated polymer solutions and entangled melts in the presence of both steady-state and transient shear and uniaxial elongational flows, supplemented by a variable link tension coefficient. Here, we provide the transient and stationary solutions of the tumbling-snake model under biaxial elongation both analytically, for small and large elongation rates, and via Brownian dynamics simulations, for the case of planar elongational flow over a wide range of rates, times, and the model parameters. We show that both the steady-state and transient first planar viscosity predictions are similar to their uniaxial counterparts, in accord with recent experimental data. The second planar viscosity seems to behave in all aspects similarly to the shear viscosity, if shear rate is replaced by elongation rate.


2017 ◽  
pp. 687-716 ◽  
Author(s):  
Edmundo Brito-de la Fuente ◽  
Mihaela Turcanu ◽  
Olle Ekberg ◽  
Críspulo Gallegos
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document