reservoir routing
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 5)

H-INDEX

11
(FIVE YEARS 1)

2020 ◽  
Vol 24 (5) ◽  
pp. 2711-2729 ◽  
Author(s):  
Joseph L. Gutenson ◽  
Ahmad A. Tavakoly ◽  
Mark D. Wahl ◽  
Michael L. Follum

Abstract. Large-scale hydrologic forecasts should account for attenuation through lakes and reservoirs when flow regulation is present. Globally generalized methods for approximating outflow are required but must contend with operational complexity and a dearth of information on dam characteristics at global spatial scales. There is currently no consensus on the best approach for approximating reservoir release rates in large spatial scale hydrologic forecasting, particularly at diurnal time steps. This research compares two parsimonious reservoir routing methods at daily steps: Döll et al. (2003) and Hanasaki et al. (2006). These reservoir routing methods have been previously implemented in large-scale hydrologic modeling applications and have been typically evaluated seasonally. These routing methods are compared across 60 reservoirs operated by the U.S. Army Corps of Engineers. The authors vary empirical coefficients for both reservoir routing methods as part of a sensitivity analysis. The method proposed by Döll et al. (2003) outperformed that presented by Hanasaki et al. (2006) at a daily time step and improved model skill over most run-of-the-river conditions. The temporal resolution of the model influences model performances. The optimal model coefficients varied across the reservoirs in this study and model performance fluctuates between wet years and dry years, and for different configurations such as dams in series. Overall, the method proposed by Döll et al. (2003) could enhance large-scale hydrologic forecasting, but can be subject to instability under certain conditions.


2019 ◽  
Author(s):  
Joseph L. Gutenson ◽  
Ahmad A. Tavakoly ◽  
Mark D. Wahl ◽  
Michael L. Follum

Abstract. Large-scale hydrologic simulations should account for attenuation through lakes and reservoirs when flow regulation is present. Generalized methods for approximating outflow are required since reservoir operation is complex and specific real-time release information is typically unavailable at global scales. There is currently no consensus on the best approach for approximating reservoir release rates in large spatial scale hydrologic forecasting. This research compares two parsimonious reservoir routing methods previously implemented in large-scale hydrologic modeling applications, requiring minimal data so as not to limit their usage. The methods considered are those proposed by Döll et al. (2003) and Hanasaki et al. (2006). This paper compares the two methodologies across 60 reservoirs operated from 2006–2012 by the U.S. Army Corps of Engineers. The authors vary empirical coefficients for both reservoir routing methods as part of a sensitivity analysis. The Döll method generally outperformed the Hanasaki method at a daily time step, improving model skill in most cases beyond run-of-the-river conditions. The temporal resolution of the model influences performance. The optimal model coefficients varied across the reservoirs in this study and model performance fluctuates between wet years and dry years, and for different configurations such as dams in series. Overall, the Döll and Hanasaki Methods could enhance large scale hydrologic forecasting, but can be subject to instability under certain conditions.


2019 ◽  
Vol 85 ◽  
pp. 07001 ◽  
Author(s):  
Cristina Sorana Ionescu ◽  
Daniela Elena Gogoaşe Nistoran

The objective of the paper is to compare the hydrologic and hydraulic reservoir routing methods in term of assumptions, equations, numerical computation procedures, necessary data and advantages-disadvantages of their use. To test the results provided by the two methods, a set of two reservoirs from Romania was chosen: one long and narrow and the other one roundly shaped. Corresponding inflow hydrographs were chosen, and similar conditions were imposed for the outflow dam control structures, namely the initial water level in the reservoir to be at the Spillway Crest Level (SCL) and no outflow control. For the hydrologic method the Puls procedure was used and a program was written in Scilab to solve the continuity equation in finite differences. For the hydraulic method HEC-RAS software was used to solve the 1D Saint-Venant equations. Outflow and stage hydrographs at the dam were compared together with the stage hydrograph at the reservoir tail for the hydraulic method. Results show that the hydraulic method should be used for the long and narrow reservoirs, as it considers the backwater effect, whereas the hydrologic method can be efficiently used for all other reservoirs where this effect is negligible.


2018 ◽  
Vol 881 ◽  
pp. 78-85 ◽  
Author(s):  
Rachmad Jayadi ◽  
Istiarto ◽  
Ansita Gukitapingin Pradipta

The Wonogiri Reservoir with 1.343 km2 catchment area has a major problem of sedimentation. To overcome this issue, a new spillway has been built and closure dike is being constructed to localize sediment inflow from the Keduang watershed. Study on the effect of the closure and overflow dike on the reservoir operation in flood period is necessary to evaluate the performance of flood control related to the flood risk in the downstream area of the reservoir. For this purpose, the reservoir routing simulation model was developed under two condition, namely old condition and new condition with the new spillway and closure dike. The reservoir routing simulation was conducted for three inflow hydrographs of 60 and 500 years return period, and probable maximum flood (PMF). The results show that the presence of closure dike causes the peak outflow discharge increases to 1.45%, 75.18% and 56.28% for inflow hydrograph of 60 years, 500 years return period and PMF, respectively. Furthermore, the maximum water level also increases by 0.3 m, 1.9 m and 0.9 m for those three new design floods respectively. In order to reduce the dam overtopping failure chance of the 500 years return period flood, it is recommended to operate full opening of the new spillway gate when the water level reaches elevation +135.6 m MSL.


2018 ◽  
Vol 11 (6) ◽  
Author(s):  
Ahmed Samy Kamis ◽  
Jarbou A. Bahrawi ◽  
Amro M. Elfeki

2018 ◽  
Vol 32 (5) ◽  
pp. 1795-1809 ◽  
Author(s):  
Jiabo Yin ◽  
Shenglian Guo ◽  
Zhangjun Liu ◽  
Guang Yang ◽  
Yixuan Zhong ◽  
...  

2017 ◽  
Vol 3 (2) ◽  
pp. 343 ◽  
Author(s):  
Faza Ramadhani

The change of land use in Mt. Muria area Central Java has been resulting in the significant sheet erosion of upstream watershed around Mt. Muria, followed by considerably high sedimentation on rivers downstream that lead to the reduction of cross sections of the rivers including Logung River. Such situation has been contributing the condition that downstream of Logung River is very potential to experience over flow and inundation to its surrounding area. An idea of constructing the Logung Dam was introduced in 1986 that aimed at reducing the aforementioned inundation. Besides, the development of Logung Dam was also aimed at fulfilling both irrigation and non-irrigation water demand. This paper presents the results of the analysis of the water availability and flood control performance of the Logung Dam. The dependable flow was analyzed by applying the National Rural Electric Cooperative Association (NRECA) method in order to determine the low flow characteristics, whereas the identification of the high flow characteristics was carried out by using the Synthetic Unit Hydrograph (SUH) methods, i.e., the GAMA I and Nakayasu modeling approach. At a certain reservoir characteristic and a defined geometry of spillway, several reservoir routing simulations were carried out on both dependable flows and high flows. Results of the reservoir routing showed the promising water availability of the Logung Dam to fulfill water demand for both irrigation and non-irrigation, whereas the reservoir routing could reduce the probable maximum flood from QPMF from 1,031 m3/s to approximately 950 m3/s or damping efficiency at 7.86%. Further analysis suggests necessary operation and maintenance of Logung Dam to sustain its function and to mitigate possible problems related to reservoir sedimentation.


Sign in / Sign up

Export Citation Format

Share Document