complex equilibria
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 6)

H-INDEX

20
(FIVE YEARS 1)

Author(s):  
K. T. Ishola ◽  
O. T. Olanipekun ◽  
O. T. Bolarinwa ◽  
R. D. Oladeji ◽  
A. Abubakar

An understanding of the principles of complex equilibria and species distribution in different solutions is important in expounding and correlating the interaction of different ligands with different metal ions in complex formation. Therefore, acid-base equilibria involved in the formation of binary and ternary complexes of Co (II), Cu (II) and Pb (II) with methionine (Met) and uracil (Urc) have been determined by potentiometric titration technique. The stability constants of the complexes were evaluated at 35 ± 0.1°C and 0.02 M ionic strength (kept constant with NaNO3) in aqueous and organic-aqueous media. The species distribution in solutions as a function of pH was determined using the Hyss program. The stability of the ternary complexes relative to the corresponding binary complexes of the secondary ligand is measured in terms ΔlogK and % RS values. The ternary complexes are observed to be more stable than binary complexes in the media except for [CuMetUrc] ternary complex in organic-aqueous medium where the ternary complex is less stable than the binary complex of the uracil. The overall stability of the ternary complexes was higher in organic-aqueous system than aqueous system. The stability of the complexes was found to be correlated with the covalent index of the metal ions and Jahn Teller distortion. pH-studies of these systems revealed an increase in the concentrations of the ternary complexes with increase in pH. The formation of binary complexes was shown to be favoured in physiological pH range (3-7) while that of the ternary complexes is observed to be favoured in the pH range 5-10.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Riccardo Conti ◽  
Davide Masoero

Abstract We study the large momentum limit of the monster potentials of Bazhanov-Lukyanov-Zamolodchikov, which — according to the ODE/IM correspondence — should correspond to excited states of the Quantum KdV model.We prove that the poles of these potentials asymptotically condensate about the complex equilibria of the ground state potential, and we express the leading correction to such asymptotics in terms of the roots of Wronskians of Hermite polynomials.This allows us to associate to each partition of N a unique monster potential with N roots, of which we compute the spectrum. As a consequence, we prove — up to a few mathematical technicalities — that, fixed an integer N , the number of monster potentials with N roots coincides with the number of integer partitions of N , which is the dimension of the level N subspace of the quantum KdV model. In striking accordance with the ODE/IM correspondence.


2019 ◽  
pp. 267-278
Author(s):  
W. John Rankin
Keyword(s):  

Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1462
Author(s):  
Zsolt Valicsek ◽  
Máté Kovács ◽  
Ottó Horváth

CeF3 displays favorable scintillation properties, which have been utilized for decades in various solid-state systems. Its emission undergoes multi-component decays, which were interpreted by lattice defects and so-called intrinsic features herein. This study of the complex equilibria in connection with photophysical behavior of the cerium(III)-fluoride system in solution gave us the possibility to reveal the individual contribution of the [CeIIIFx(H2O)9−x]3−x species to the photoluminescence. Spectrophotometry and spectrofluorometry (also in time-resolved mode) were used, and combined with sophisticated evaluation methods regarding both the complex equilibria and the kinetics of the photoinduced processes. The individual photophysical parameters of the [CeIIIFx(H2O)9−x]3−x complexes were determined. For the kinetic evaluation, three methods of various simplifications were applied and compared. The results indicated that the rates of some excited-state equilibrium processes were comparable to those of the emission decay steps. Our results also contribute to the explanation of the multi-component emission decays in the CeF3-containing scintillators, due to the various coordination environments of Ce3+, which can be affected by the excitation leading to the dissociation of the metal-ligand bonds.


2016 ◽  
pp. 654-660
Author(s):  
Kirila Stojnova ◽  
Petya Racheva ◽  
Vidka Divarova ◽  
Kristina Bozhinova ◽  
Vanya Lekova
Keyword(s):  

Small GTPases ◽  
2016 ◽  
Vol 8 (4) ◽  
pp. 237-244 ◽  
Author(s):  
Joanna R. Watson ◽  
Darerca Owen ◽  
Helen R. Mott

2016 ◽  
Author(s):  
Michael Frenkel ◽  
Robert D. Chirico ◽  
Vladimir Diky ◽  
Paul L. Brown ◽  
John H. Dymond ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document