soft modes
Recently Published Documents


TOTAL DOCUMENTS

343
(FIVE YEARS 24)

H-INDEX

43
(FIVE YEARS 3)

2022 ◽  
Vol 130 (1) ◽  
pp. 84
Author(s):  
А.С. Крылов ◽  
А.Н. Втюрин ◽  
И.А. Гудим ◽  
И.В. Немцев ◽  
С.Н. Крылова

The Raman spectra of four crystals of TbFe3-хGax (BO3) 4 solid solutions (x from 0 to 0.54) were studied in the temperature range from 8 to 350 K. The temperatures of structural phase transitions were determined. The observed spectral behavior is characteristic to condensation and restoration of soft modes. Soft modes are associated with a structural phase transition from the R32 phase to the P3121 phase. The Compositions-Temperature phase diagram was constructed


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chen Wang ◽  
Jiangtao Wu ◽  
Zezhu Zeng ◽  
Jan Embs ◽  
Yanzhong Pei ◽  
...  

AbstractGeTe that exhibits a strong anharmonicity and a ferroelectric phase transition between the rhombohedral and cubic structures has emerged as one of the leading thermoelectric materials. Herein, combining molecular dynamics simulations and inelastic neutron scattering measurements, the lattice dynamics in GeTe have been investigated to reveal the soft-mode mechanisms across the phase transition. We have constructed a first-principles-based machine-learning interatomic potential, which successfully captures the dynamical ferroelectric phase transition of GeTe by adopting the neural network technique. Although the low-energy acoustic phonons remain relatively unaffected at elevated temperatures, the high-energy optical, and longitudinal acoustic phonons demonstrate strong renormalizations as evidenced from the vibrational phonon spectra, which are attributed to the large anharmonicity accompanying the phase transition. Furthermore, our results reveal a nonmonotonic temperature dependence of the soft-modes beyond the perturbative regime. The insight provided by this work into the soft-modes may pave the way for further phonon engineering of GeTe and the related thermoelectrics.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Junegone Chay ◽  
Chul Kim

Abstract In soft-collinear effective theory, we analyze the structure of rapidity divergence due to the collinear and soft modes residing in disparate phase spaces. The idea of an effective theory is applied to a system of collinear modes with large rapidity and soft modes with small rapidity. The large-rapidity (collinear) modes are integrated out to obtain the effective theory for the small-rapidity (soft) modes. The full SCET with the collinear and soft modes should be matched onto the soft theory at the rapidity boundary, and the matching procedure becomes exactly the zero-bin subtraction. The large-rapidity region is out of reach for the soft mode, which results in the rapidity divergence. The rapidity divergence in the collinear sector comes from the zero-bin subtraction, which ensures the cancellation of the rapidity divergences from the soft and collinear sectors. In order to treat the rapidity divergence, we construct the rapidity regulators consistently for all the modes. They are generalized by assigning independent rapidity scales for different collinear directions. The soft regulator incorporates the correct directional dependence when the innate collinear directions are not back-to-back, which is discussed in the N-jet operator. As an application, we consider the Sudakov form factor for the back-to-back collinear current and the soft-collinear current, where the soft rapidity regulator for a soft quark is developed. We extend the analysis to the boosted heavy quark sector and exploit the delicacy with the presence of the heavy quark mass. We present the resummed results of large logarithms in the form factors for various currents with the light and the heavy quarks, employing the renormalization group evolution on the renormalization and the rapidity scales.


Soft Matter ◽  
2021 ◽  
Vol 17 (38) ◽  
pp. 8624-8641
Author(s):  
Harry Liu ◽  
Di Zhou ◽  
Leyou Zhang ◽  
David K. Lubensky ◽  
Xiaoming Mao

We find mechanical topological phases in models of epithelial tissues with active tension on cell edges, where soft modes and stress distribution exhibit exponential localization to edges and interfaces of tissues.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Cheng Peng ◽  
Stefan Stanojevic
Keyword(s):  

Abstract We study various properties of the soft modes in the $$ \mathcal{N} $$ N = 2 supersymmetric SYK model.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Teruaki Suyama ◽  
Yuichiro Tada ◽  
Masahide Yamaguchi

Abstract Non-Gaussianities of primordial perturbations in the soft limit provide important information about the light degrees of freedom during inflation. The soft modes of the curvature perturbations, unobservable for a local observer, act to rescale the spatial coordinates. We determine how the trispectrum in the collapsed limit is shifted by the rescaling due to the soft modes. We find that the form of the inequality between the $f_\mathrm{NL}$ and $\tau_\mathrm{NL}$ parameters is not affected by the rescaling, demonstrating that the role of the inequality as an indicator of the light degrees of freedom remains intact. We also comment on the local observer effect on the consistency relation for ultra-slow-roll inflation.


Sign in / Sign up

Export Citation Format

Share Document