scholarly journals An integrative taxonomic revision of slug-eating snakes (Squamata: Pareidae: Pareineae) reveals unprecedented diversity in Indochina

PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12713
Author(s):  
Nikolay A. Poyarkov ◽  
Tan Van Nguyen ◽  
Parinya Pawangkhanant ◽  
Platon V. Yushchenko ◽  
Peter Brakels ◽  
...  

Slug-eating snakes of the subfamily Pareinae are an insufficiently studied group of snakes specialized in feeding on terrestrial mollusks. Currently Pareinae encompass three genera with 34 species distributed across the Oriental biogeographic region. Despite the recent significant progress in understanding of Pareinae diversity, the subfamily remains taxonomically challenging. Here we present an updated phylogeny of the subfamily with a comprehensive taxon sampling including 30 currently recognized Pareinae species and several previously unknown candidate species and lineages. Phylogenetic analyses of mtDNA and nuDNA data supported the monophyly of the three genera Asthenodipsas, Aplopeltura, and Pareas. Within both Asthenodipsas and Pareas our analyses recovered deep differentiation with each genus being represented by two morphologically diagnosable clades, which we treat as subgenera. We further apply an integrative taxonomic approach, including analyses of molecular and morphological data, along with examination of available type materials, to address the longstanding taxonomic questions of the subgenus Pareas, and reveal the high level of hidden diversity of these snakes in Indochina. We restrict the distribution of P. carinatus to southern Southeast Asia, and recognize two subspecies within it, including one new subspecies proposed for the populations from Thailand and Myanmar. We further revalidate P. berdmorei, synonymize P. menglaensis with P. berdmorei, and recognize three subspecies within this taxon, including the new subspecies erected for the populations from Laos and Vietnam. Furthermore, we describe two new species of Pareas from Vietnam: one belonging to the P. carinatus group from southern Vietnam, and a new member of the P. nuchalis group from the central Vietnam. We provide new data on P. temporalis, and report on a significant range extension for P. nuchalis. Our phylogeny, along with molecular clock and ancestral area analyses, reveal a complex diversification pattern of Pareinae involving a high degree of sympatry of widespread and endemic species. Our analyses support the “upstream” colonization hypothesis and, thus, the Pareinae appears to have originated in Sundaland during the middle Eocene and then colonized mainland Asia in early Oligocene. Sundaland and Eastern Indochina appear to have played the key roles as the centers of Pareinae diversification. Our results reveal that both vicariance and dispersal are responsible for current distribution patterns of Pareinae, with tectonic movements, orogeny and paleoclimatic shifts being the probable drivers of diversification. Our study brings the total number of Pareidae species to 41 and further highlights the importance of comprehensive taxonomic revisions not only for the better understanding of biodiversity and its evolution, but also for the elaboration of adequate conservation actions.

2021 ◽  
Vol 307 (2) ◽  
Author(s):  
Pau Carnicero ◽  
Núria Garcia-Jacas ◽  
Llorenç Sáez ◽  
Theophanis Constantinidis ◽  
Mercè Galbany-Casals

AbstractThe eastern Mediterranean basin hosts a remarkably high plant diversity. Historical connections between currently isolated areas across the Aegean region and long-distance dispersal events have been invoked to explain current distribution patterns of species. According to most recent treatments, at least two Cymbalaria species occur in this area, Cymbalaria microcalyx and C. longipes. The former comprises several intraspecific taxa, treated at different ranks by different authors based on morphological data, evidencing the need of a taxonomic revision. Additionally, some populations of C. microcalyx show exclusive morphological characters that do not match any described taxon. Here, we aim to shed light on the systematics of eastern Mediterranean Cymbalaria and to propose a classification informed by various sources of evidence. We performed molecular phylogenetic analyses using ITS, 3’ETS, ndhF and rpl32-trnL sequences and estimated the ploidy level of some taxa performing relative genome size measures. Molecular data combined with morphology support the division of traditionally delimited C. microcalyx into C. acutiloba, C. microcalyx and C. minor, corresponding to well-delimited nrDNA lineages. Furthermore, we propose to combine C. microcalyx subsp. paradoxa at the species level. A group of specimens previously thought to belong to Cymbalaria microcalyx constitute a well-defined phylogenetic and morphological entity and are described here as a new species, Cymbalaria spetae. Cymbalaria longipes is non-monophyletic, but characterized by being glabrous and diploid, unlike other eastern species. The nrDNA data suggest at least two dispersals from the mainland to the Aegean Islands, potentially facilitated by marine regressions.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Davoud Fadakar ◽  
Mojdeh Raam ◽  
Hannes Lerp ◽  
Ali Ostovar ◽  
Hamid Reza Rezaei ◽  
...  

Abstract Background The islands in the Persian Gulf are home to several species of gazelles, i.e., Gazella bennettii, G. subgutturosa, and a new subspecies of Mountain gazelles which was discovered on Farur Island and described for the first time in 1993 as Gazella gazella dareshurii. Later, phylogenetic analyses showed that the Mountain gazelles consist of two species: G. gazella and G. arabica. As the Farur gazelles are more closely related to the Arabian forms of the Mountain gazelles, this subspecies is regarded to be G. arabica dareshurii. Until now, the origin of this subspecies has been an enigma. Results Here, we used mitochondrial cyt b, two nuclear introns (CHD2 and ZNF618), and morphological data to address this question by investigating the taxonomic position of the Farur gazelles. The results show that this population is monophyletic and split from other G. arabica populations probably 10,000 BP. Conclusions It is a natural relict population that was trapped on the island due to the rising sea levels of the Persian Gulf after the Last Glacial Maximum. Intermittent drought and flooding are suggested to be the main factors balancing population growth in the absence of natural predators on this monsoon-influenced island. Conservation actions should focus on preserving the natural situation of the island (cease introducing mesquite tree and other invasive species, stop building new construction and roads, and caution in providing water sources and forage), and possibly introducing individuals to other islands (not inhabited by gazelles) or to fenced areas on the Iranian mainland (strictly isolated from other gazelle populations) when the population reaches the carrying capacity of the island.


Zootaxa ◽  
2017 ◽  
Vol 4329 (2) ◽  
pp. 101 ◽  
Author(s):  
SERGEI TARASOV

Two Oriental dung beetle genera: Parachorius Harold, 1873 and Cassolus Sharp, 1875 have long had an ambiguous tribal position in Scarabaeinae (Coleoptera: Scarabaeidae), but have never been considered as closely related. A recently discovered species representing the morphological link between the two genera gave a hint to their possible close affiliation. To assess phylogenetic and taxonomic placement of these genera, I conducted phylogenetic analyses of global dung beetle samples using morphological (134 taxa, 232 characters) and molecular (551 terminals, 8 gene regions) data. Both morphological and molecular analyses strongly support the monophyly of Parachorius + Cassolus. This leads to the synonymy of Parachorius with Cassolus new synonymy, and resulted in the new generic concept for Parachorius. The isolated phylogenetic position of Parachorius and its morphological distinctiveness from all other known Scarabaeinae tribes suggest recognition of a new tribe, Parachoriini new tribe, to maintain the stability of tribal classification in dung beetles. Investigation of old and recent material of Parachorius revealed a large number of undescribed species and the need for a taxonomic revision of this genus. The revision of Parachorius, powered by the 3i cybertaxonomic tool, is presented in this study. The revised Parachorius is comprised of 19 species from the Oriental and southeastern Palaearctic Regions, of which seven are newly described (P. asymmetricus new species, P. bolavensis new species, P. longipenis new species, P. newthayerae new species, P. pseudojavanus new species, P. schuelkei new species, and P. solodovnikovi new species). Three species names in Parachorius are synonymized, namely, P. fungorum Kryzhanovsky & Medvedev, 1966 = P. krali Utsunomiya & Masumoto, 2001 new synonymy; P. thomsoni Harold, 1873 = P. lannathai Hanboonsong & Masumoto, 2001 new synonymy; and P. peninsularis (Arrow, 1907) = C. pongchaii Masumoto, 2001 new synonymy. Two species originally described in Cassolus (C. sumatranus and C. minutus) are transferred to the genus Panelus Lewis, 1895. The rank of the genus Macropanelus is lowered to a subgenus within Panelus (i.e. Panelus (Macropanelus) new status). 


Phytotaxa ◽  
2014 ◽  
Vol 162 (5) ◽  
pp. 241 ◽  
Author(s):  
Diego Leonel Salariato ◽  
Fernando Omar Zuloaga ◽  
Ihsan Ali Al-Shehbaz

Following the most recent phylogenetic analyses of Menonvillea, an updated taxonomic revision of the genus based on molecular and morphological data is presented here. Menonvillea currently includes 24 species distributed in Argentina and Chile. Three new sections, sects. Cuneata, Menonvillea, and Scapigera, are proposed. One subspecies is raised to the specific rank, and the new combination M. marticorenae is proposed. Descriptions, keys to all taxa, updated geographical distributions, maps, and illustrations are provided. Lectotypes for M. filifolia, M. minima, M. purpurea, and M. flexuosa f. tomentosa are designated.


2013 ◽  
Vol 26 (1) ◽  
pp. 1 ◽  
Author(s):  
Kelly A. Shepherd ◽  
Andrew Perkins ◽  
Joel Collins ◽  
Margaret Byrne ◽  
Kevin R. Thiele

Taxonomic delineation of closely related taxa can be difficult, particularly in regions such as southern Western Australia where a highly diverse flora exhibits complex patterns of subtle morphological variation and genetic structuring and where some taxa have highly disjunct populations. A combined approach utilising highly variable, non-coding chloroplast gene regions and morphological data is used here to help delimit cryptic taxa in the rare Western Australian species Pityrodia scabra A.S.George. The species comprises disjunct populations over 400 km of the Western Australian wheatbelt from near Wyalkatchem, Southern Cross and Lake Lefroy. Morphological features such as leaf phyllotaxy, calyx size and indumentum vary among the populations and provide some evidence for cryptic taxa. Phylogenetic analyses based on cpDNA psbA–trnH and psbD–trnT and nuclear external transcribed spacer (ETS) sequences revealed genetic distinctiveness between the Wyalkatchem (type) population and the Southern Cross and Lake Lefroy populations. This evidence, when used in conjunction with the morphological differences, provides support for the recognition of the new subspecies described herein as Pityrodia scabra subsp. dendrotricha K.A.Sheph. subsp. nov. This new subspecies is of conservation concern because it is currently known only from a few, isolated populations; the typical subspecies remains Critically Endangered because it comprises one extant population. A description of both subspecies, a key and images are provided.


Taxonomy ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 313-344
Author(s):  
Wilson J. E. M. Costa ◽  
Axel M. Katz

The Microcambevinae are a catfish subfamily endemic to the Brazilian Atlantic Forest, comprising rare species with interstitial habits. Microcambevines have been classified in two genera, Listrura and Microcambeva, but the relationships among included intrageneric lineages are still poorly understood. The objectives of this study are to conduct a phylogenetic analysis integrating morphological characters and a multigene dataset, and to propose a classification better reflecting morphological diversity and phylogenetic relationships. Phylogenetic analyses combining 57 morphological characters and a 2563 bp molecular dataset generated similar phylogenetic trees with high support values for most clades, including the two genera and some intrageneric groups. Six morphologically distinctive infrageneric lineages, three in Listrura and three in Microcambeva, are classified as subgenera, as well as two new species are described. The morphological diversity here recorded integrated to available information about habitat indicate high level of divergent specialisation among lineages. The analyses indicate a series of convergent morphological traits between Listrura and other teleosts sharing a fossorial lifestyle, as well as specialised traits independently occurring within Listrura lineages. Similarly, a great diversity of morphological traits occurs convergently in Microcambeva lineages and other teleosts sharing psammophilic habits. This study shows that combining molecular and morphological data yields well-supported phylogenies, making possible to unambiguously diagnose clades and to establish evolutionary hypothesis on morphological evolution.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1100
Author(s):  
Agnieszka Bugaj-Nawrocka ◽  
Dominik Chłond

This paper presents a taxonomic revision and phylogenetic analysis of nine known species of the genus Phonoctonus Stål, 1853, distributed exclusively in the Afrotropical region. The revision and phylogenetic analysis were performed using morphological data. A full redescription for all species is provided, taxonomical problems are clarified, and diagnostic characters are presented and illustrated. Based on the analysis, thirteen species are recognised as valid: Phonoctonus bifasciatus stat. nov., P. caesar, P. elegans, P. fairmairei stat. nov., P. fasciatus, P. grandis, P. immitis stat. rev., P. luridus, P. lutescens, P. nigrofasciatus stat. rev., P. picta stat. nov., P. picturatus stat. rev., and P. principalis. New synonymies are proposed: Phonoctonus nigrofasciatus= P. fasciatus var. poultoni syn. nov., P. picturatus = P. fasciatus var. discalis syn. nov., and P. principalis = P. validus syn. nov. An identification key to separate the species, drawings of dorsal habitus, and distribution maps of all valid species are presented. Performed morphological phylogenetic analyses indicate monophyly of the genus Phonoctonus.


Phytotaxa ◽  
2019 ◽  
Vol 392 (1) ◽  
pp. 1
Author(s):  
GABRIEL F. GONÇALVES ◽  
ANNA VICTORIA S. R. MAUAD ◽  
GIULIANA TAQUES ◽  
ERIC C. SMIDT ◽  
FÁBIO DE BARROS

In order to evaluate the monophyly of the genus Orleanesia (Orchidaceae) and to assess its position within Laeliinae, a phylogenetic analysis was performed using molecular (nuclear ITS and plastid matK DNA sequences) and morphological data. A taxonomic revision of Orleanesia was also performed, with a description of the genus and its species using fresh living plants and 115 exsiccates from 31 herbaria. All phylogenetic analyses were highly congruent, and thus the sequence data from all three data sets were combined. The resulting phylogeny corroborated the monophyly of Orleanesia, with two strongly supported clades, and confirmed Caularthron as its sister group. Character analysis was not very informative due to a high degree of homoplasy. Two lectotypifications and three new synonyms were proposed for the genus, thereby reducing the number of accepted species to six. Although none of the species of Orleanesia are considered endangered, it is clear that some populations are threatened with deforestation and habitat reduction.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2232
Author(s):  
Eugeny V. Boltenkov ◽  
Elena V. Artyukova ◽  
Anna Trias-Blasi

The species of Iris subser. Chrysographes are herbaceous perennials found mainly in southwestern and central China and also in the Eastern Himalayas. To date, six species have been recognized in this group. In the framework of its taxonomic revision, we have carried out molecular and morphological studies. For this, we have sequenced four chloroplast DNA regions (trnS–trnG, trnL–trnF, rps4–trnSGGA, and psbA–trnH) for 25 samples across the major distribution ranges of the six species. Our phylogenetic analyses evidence that I. subser. Chrysographes is indeed a monophyletic group, which is sister to I. subser. Sibiricae. Within I. subser. Chrysographes, we have recovered four divergent lineages further supported by diagnosable morphological traits and geographical distributions. In this context, our data confirm the recognition of I. clarkei, I. delavayi, and I. wilsonii in their traditional concepts. Furthermore, both molecular and morphological data support the close affinities and similar distribution ranges of I. bulleyana, I. chrysographes, and I. forrestii, which suggests including I. chrysographes and I. forrestii as color forms in I. bulleyana. A revised taxonomic treatment for the group, including the notes on the species distributions and habitats, and also an identification key to the species are provided.


Nematology ◽  
2002 ◽  
Vol 4 (5) ◽  
pp. 573-582 ◽  
Author(s):  
August Coomans

AbstractSince phylogenetic systematics became generally accepted and especially since informatics and molecular techniques for phylogenetic analysis were developed, systematics has undergone a conceptual and methodological revolution. Taxonomy, on the contrary, suffered a decline. Poor descriptions, too much routine work and low citation rates hampered it. As a result, the discipline became less attractive to young scientists. With only a small fraction of the biodiversity known, this situation will lead to serious problems in the future in all those fields of nematology depending on a correct identification of species. Phylogenetic analyses of nematodes have been mainly based on morphology, supplemented with developmental characters, but in recent years molecular methods have provided entirely new data sets. Phylogenetic estimates derived from independent data may provide new insights in character homologies through reciprocal illumination. Classifications of nematodes were often biased according to the expertise of the author and were only recently based on the principles of phylogenetic systematics. Recently, molecular and morphological data have been used to support a new overall classification with only (presumably) monophyletic taxa. In this classification plant, as well as animal, parasitic taxa are hierarchically downgraded in accordance with their phylogenetic history. Species occupy an important position in all aspects of biology, therefore the species concept matters. It determines, for example, the outcome of biodiversity assessments, distribution patterns, etc. However, several problems remain to be solved before a consensus will be reached about the choice of a concept. Future research in nematode systematics should comprise well-focused taxonomy based on a combination of classical and modern methods in a way that can raise the interest of young scientists as well as of funding agencies. It should be realised that, with the dwindling present taxonomic expertise, this is a very urgent matter.


Sign in / Sign up

Export Citation Format

Share Document