Thermal rectification effect of pristine graphene induced by vdW heterojunction substrate

Carbon ◽  
2022 ◽  
Author(s):  
Guofu Chen ◽  
Wenlong Bao ◽  
Jiao Chen ◽  
Zhaoliang Wang
Author(s):  
Harutoshi Hagino ◽  
Koji Miyazaki

The size effect on thermal conduction due to phonon boundary scattering in films was studied as controlling heat conduction. Thermal rectifier was proposed as a new heat control concept by a ballistic rectifier relies on asymmetric scattering of phonons in asymmetric linear structure. We focus on the thermal rectification effect in membrane with asymmetric pores. We discussed on the thermal rectification effect from the calculation and thermal conductivity measurement of asymmetric structured membrane. Thermal conduction was calculated by using radiation calculation of ANSYS Fluent based on Boltzmann transport theory which is development of equation of phonon radiative transfer from view point of phonon mean free path and boundary scattering condition. In-plane thermal conductivities of free standing membranes with microsized asymmetric pores were measured by periodic laser heating measurement. From the result of calculation, phonons were transition to ballistic transport in the membranes with asymmetric shaped pores and thermal rectification effect was obtained on the condition of specular scattering because of the asymmetric back-scattering of ballistic phonons from asymmetric structure. The thermal rectification effect was increased with decreasing thickness of membrane shorter and shorter than mean free path of phonon. From the result of measurements, we were able to confirm the reduction of thermal conductivity based on ballistic phonon transport theory, but the strong thermal rectification effect was not confirmed.


2008 ◽  
Vol 25 (8) ◽  
pp. 3032-3035 ◽  
Author(s):  
Chen Xue-Ou ◽  
Dong Bing ◽  
Lei Xiao-Lin

2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Yuan Feng ◽  
Xingang Liang

Silicene, the silicon-based two-dimensional structure with honeycomb lattice, has been discovered and expected to have tremendous application potential in fundamental industries. However, its thermal transport mechanism and thermal properties of silicene have not been fully explained. We report a possible way to control the thermal transport and thermal rectification in silicene nanosheets by distributing triangular cavities, which are arranged in a staggered way. The nonequilibrium molecular dynamics (NEMD) simulation method is used. The influences of the size, number, and distribution of cavities are investigated. The simulation results show that reflections of phonon at the vertex and the base of the triangular cavities are quite different. The heat flux is higher when heat flow is from the vertex to the base of cavities, resulting in thermal rectification effect. The thermal rectification effect is strengthened with increasing cavity size and number. A maximum of thermal rectification with varying distance between columns of cavities is observed.


Author(s):  
Feng Yuan ◽  
Xingang Liang

Silicene, the silicon-based two-dimensional structure with honeycomb lattice, has been discovered to have tremendous application potential in fundamental industries. However, the thermal transport mechanism and thermal properties of silicene has not been fully explained. We report a possible way to control the thermal transport and thermal rectification in silicene nanosheets by designing distributions of a series of triangular cavities in this paper with the nonequilibrium molecular dynamic simulations. The cavities are arranged in a staggered way. The reflection of phonon at the vertex and the base of the triangular cavities are quite different. This difference is used to control the phonon transport in opposite directions and such an arrangement is expected to have very significant thermal rectification effect. The size of cavities, the distance between the triangular cavities and the distribution of cavities are investigated to observe the thermal rectification, which would benefit the design of an experiment that can clearly demonstrate thermal rectification.


2010 ◽  
Vol 59 (1) ◽  
pp. 476
Author(s):  
Wang Jun ◽  
Li Jing-Ying ◽  
Zheng Zhi-Gang

Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 471
Author(s):  
Feng Tian ◽  
Jian Zou ◽  
Lei Li ◽  
Hai Li ◽  
Bin Shao

In this paper we consider a bipartite system composed of two subsystems each coupled to its own thermal environment. Based on a collision model, we mainly study whether the approximation (i.e., the inter-system coupling is ignored when modeling the system–environment interaction) is valid or not. We also address the problem of heat transport unitedly for both excitation-conserving system–environment interactions and non-excitation-conserving system–environment interactions. For the former interaction, as the inter-system interaction strength increases, at first this approximation gets worse as expected, but then counter-intuitively gets better even for a stronger inter-system coupling. For the latter interaction with asymmetry, this approximation gets progressively worse. In this case we realize a perfect thermal rectification, and we cannot find an apparent rectification effect for the former interaction. Finally and more importantly, our results show that whether this approximation is valid or not is closely related to the quantum correlations between the subsystems, i.e., the weaker the quantum correlations, the more justified the approximation and vice versa.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Malgorzata Skorupska ◽  
Anna Ilnicka ◽  
Jerzy P. Lukaszewicz

AbstractThe synthesis of metal-free but electrochemically active electrode materials, which could be an important contributor to environmental protection, is the key motivation for this research approach. The progress of graphene material science in recent decades has contributed to the further development of nanotechnology and material engineering. Due to the unique properties of graphene materials, they have found many practical applications: among others, as catalysts in metal-air batteries, supercapacitors, or fuel cells. In order to create an economical and efficient material for energy production and storage applications, researchers focused on the introduction of additional heteroatoms to the graphene structure. As solutions for functionalizing pristine graphene structures are very difficult to implement, this article presents a facile method of preparing nitrogen-doped graphene foam in a microwave reactor. The influence of solvent type and microwave reactor holding time was investigated. To characterize the elemental content and structural properties of the obtained N-doped graphene materials, methods such as elemental analysis, high-resolution transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy were used. Electrochemical activity in ORR of the obtained materials was tested using cyclic voltamperometry (CV) and linear sweep voltamperometry (LSV). The tests proved the materials’ high activity towards ORR, with the number of electrons reaching 3.46 for tested non-Pt materials, while the analogous value for the C-Pt (20 wt% loading) reference was 4.


Sign in / Sign up

Export Citation Format

Share Document