positron emission mammography
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 10)

H-INDEX

26
(FIVE YEARS 0)

2022 ◽  
Vol 12 (2) ◽  
pp. 823
Author(s):  
Md. Rafiqul Islam ◽  
Mehrdad Shahmohammadi Beni ◽  
Shigeki Ito ◽  
Shinichi Gotoh ◽  
Taiga Yamaya ◽  
...  

Proton range monitoring and verification is important to enhance the effectiveness of treatment by ensuring that the correct dose is delivered to the correct location. Upon proton irradiation, different positron emitting radioisotopes are produced by the inelastic nuclear interactions of protons with the target elements. Recently, it was reported that the 16O(p,2p2n)13N reaction has a relatively low threshold energy, and it could be potentially used for proton range verification. In the present work, we have proposed an analysis scheme (i.e., algorithm) for the extraction and three-dimensional visualization of positron emitting radioisotopes. The proposed step-by-step analysis scheme was tested using our own experimentally obtained dynamic data from a positron emission mammography (PEM) system (our developed PEMGRAPH system). The experimental irradiation was performed using an azimuthally varying field (AVF) cyclotron with a 80 MeV monoenergetic pencil-like beam. The 3D visualization showed promising results for proton-induced radioisotope distribution. The proposed scheme and developed tools would be useful for the extraction and 3D visualization of positron emitting radioisotopes and in turn for proton range monitoring and verification.


2021 ◽  
Vol 35 (3) ◽  
pp. 406-414
Author(s):  
Yoko Satoh ◽  
Masami Kawamoto ◽  
Kazunori Kubota ◽  
Koji Murakami ◽  
Makoto Hosono ◽  
...  

AbstractBreast positron emission tomography (PET) has had insurance coverage when performed with conventional whole-body PET in Japan since 2013. Together with whole-body PET, accurate examination of breast cancer and diagnosis of metastatic disease are possible, and are expected to contribute significantly to its treatment planning. To facilitate a safer, smoother, and more appropriate examination, the Japanese Society of Nuclear Medicine published the first edition of practice guidelines for high-resolution breast PET in 2013. Subsequently, new types of breast PET have been developed and their clinical usefulness clarified. Therefore, the guidelines for breast PET were revised in 2019. This article updates readers as to what is new in the second edition. This edition supports two different types of breast PET depending on the placement of the detector: the opposite-type (positron emission mammography; PEM) and the ring-shaped type (dedicated breast PET; dbPET), providing an overview of these scanners and appropriate imaging methods, their clinical applications, and future prospects. The name “dedicated breast PET” from the first edition is widely used to refer to ring-shaped type breast PET. In this edition, “breast PET” has been defined as a term that refers to both opposite- and ring-shaped devices. Up-to-date breast PET practice guidelines would help provide useful information for evidence-based breast imaging.


2020 ◽  
Vol 65 (24) ◽  
pp. 245003
Author(s):  
Luis Fernando Torres-Urzúa ◽  
Héctor Alva-Sánchez ◽  
Arnulfo Martínez-Dávalos ◽  
Francisco Osvaldo García-Pérez ◽  
Rocío Marlene Peruyero-Rivas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document