scholarly journals Clinical practice guidelines for high-resolution breast PET, 2019 edition

2021 ◽  
Vol 35 (3) ◽  
pp. 406-414
Author(s):  
Yoko Satoh ◽  
Masami Kawamoto ◽  
Kazunori Kubota ◽  
Koji Murakami ◽  
Makoto Hosono ◽  
...  

AbstractBreast positron emission tomography (PET) has had insurance coverage when performed with conventional whole-body PET in Japan since 2013. Together with whole-body PET, accurate examination of breast cancer and diagnosis of metastatic disease are possible, and are expected to contribute significantly to its treatment planning. To facilitate a safer, smoother, and more appropriate examination, the Japanese Society of Nuclear Medicine published the first edition of practice guidelines for high-resolution breast PET in 2013. Subsequently, new types of breast PET have been developed and their clinical usefulness clarified. Therefore, the guidelines for breast PET were revised in 2019. This article updates readers as to what is new in the second edition. This edition supports two different types of breast PET depending on the placement of the detector: the opposite-type (positron emission mammography; PEM) and the ring-shaped type (dedicated breast PET; dbPET), providing an overview of these scanners and appropriate imaging methods, their clinical applications, and future prospects. The name “dedicated breast PET” from the first edition is widely used to refer to ring-shaped type breast PET. In this edition, “breast PET” has been defined as a term that refers to both opposite- and ring-shaped devices. Up-to-date breast PET practice guidelines would help provide useful information for evidence-based breast imaging.

2020 ◽  
Vol 7 ◽  
Author(s):  
Yoko Satoh ◽  
Kenji Hirata ◽  
Daiki Tamada ◽  
Satoshi Funayama ◽  
Hiroshi Onishi

Objective: This retrospective study aimed to compare the ability to classify tumor characteristics of breast cancer (BC) of positron emission tomography (PET)-derived texture features between dedicated breast PET (dbPET) and whole-body PET/computed tomography (CT).Methods: Forty-four BCs scanned by both high-resolution ring-shaped dbPET and whole-body PET/CT were analyzed. The primary BC was extracted with a standardized uptake value (SUV) threshold segmentation method. On both dbPET and PET/CT images, 38 texture features were computed; their ability to classify tumor characteristics such as tumor (T)-category, lymph node (N)-category, molecular subtype, and Ki67 levels was compared. The texture features were evaluated using univariate and multivariate analyses following principal component analysis (PCA). AUC values were used to evaluate the diagnostic power of the computed texture features to classify BC characteristics.Results: Some texture features of dbPET and PET/CT were different between Tis-1 and T2-4 and between Luminal A and other groups, respectively. No association with texture features was found in the N-category or Ki67 level. In contrast, receiver-operating characteristic analysis using texture features' principal components showed that the AUC for classification of any BC characteristics were equally good for both dbPET and whole-body PET/CT.Conclusions: PET-based texture analysis of dbPET and whole-body PET/CT may have equally good classification power for BC.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
B. B. Koolen ◽  
W. V. Vogel ◽  
M. J. T. F. D. Vrancken Peeters ◽  
C. E. Loo ◽  
E. J. Th. Rutgers ◽  
...  

Positron emission tomography (PET), with or without integrated computed tomography (CT), using 18F-fluorodeoxyglucose (FDG) is based on the principle of elevated glucose metabolism in malignant tumors, and its use in breast cancer patients is frequently being investigated. It has been shown useful for classification, staging, and response monitoring, both in primary and recurrent disease. However, because of the partial volume effect and limited resolution of most whole-body PET scanners, sensitivity for the visualization of small tumors is generally low. To improve the detection and quantification of primary breast tumors with FDG PET, several dedicated breast PET devices have been developed. In this nonsystematic review, we shortly summarize the value of whole-body PET/CT in breast cancer and provide an overview of currently available dedicated breast PETs.


1996 ◽  
Vol 23 (7) ◽  
pp. 804-806 ◽  
Author(s):  
Irving Weinberg ◽  
Stan Majewski ◽  
Andrew Weisenberger ◽  
Allen Markowitz ◽  
Luigi Aloj ◽  
...  

2017 ◽  
Vol 42 (3) ◽  
pp. 169-175 ◽  
Author(s):  
Mutsumi Noritake ◽  
Kazutaka Narui ◽  
Tomohiro Kaneta ◽  
Sadatoshi Sugae ◽  
Kentaro Sakamaki ◽  
...  

2003 ◽  
Vol 50 (5) ◽  
pp. 1624-1629 ◽  
Author(s):  
Nan Zhang ◽  
C.J. Thompson ◽  
F. Cayouette ◽  
D. Jolly ◽  
S. Kecani

Sign in / Sign up

Export Citation Format

Share Document