scholarly journals Imperfect Roll Arrangement Compensation Control based on Neural Network for Web Handling Systems

2020 ◽  
Vol 10 (3) ◽  
pp. 5694-5699
Author(s):  
D. N. Duc ◽  
L. T. Thi ◽  
T. L. Nguyen

The speed and tension control problem of a web handling system is investigated in this paper. From the system equations of motion, we developed a backstepping-sliding mode control for web speed and tension regulation tasks. It is obvious that the designed control depends heavily on roll inertia information. Dissimilar to other researches that were based on the assumptions of rolls with perfect cylindrical form with the rotating shafts of the rolls considered properly aligned, the novelty of this paper is the presentation of a neural network to compensate the effects of imperfect roll arrangement. The neural network design is based on the Radial Basis Function (RBF) network estimating the uncertainty of roll inertia. The information on estimated inertia is fed into a backstepping-sliding mode controller that ensures tension and velocity tracking. The control design is presented in a systematical approach. Closed loop system stability is proven mathematically. The tracking performance is shown through several simulation scenarios.

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Wallace M. Bessa ◽  
Gerrit Brinkmann ◽  
Daniel A. Duecker ◽  
Edwin Kreuzer ◽  
Eugen Solowjow

Mechatronic systems are becoming an intrinsic part of our daily life, and the adopted control approach in turn plays an essential role in the emulation of the intelligent behavior. In this paper, a framework for the development of intelligent controllers is proposed. We highlight that robustness, prediction, adaptation, and learning, which may be considered the most fundamental traits of all intelligent biological systems, should be taken into account within the project of the control scheme. Hence, the proposed framework is based on the fusion of a nonlinear control scheme with computational intelligence and also allows mechatronic systems to be able to make reasonable predictions about its dynamic behavior, adapt itself to changes in the plant, learn by interacting with the environment, and be robust to both structured and unstructured uncertainties. In order to illustrate the implementation of the control law within the proposed framework, a new intelligent depth controller is designed for a microdiving agent. On this basis, sliding mode control is combined with an adaptive neural network to provide the basic intelligent features. Online learning by minimizing a composite error signal, instead of supervised off-line training, is adopted to update the weight vector of the neural network. The boundedness and convergence properties of all closed-loop signals are proved using a Lyapunov-like stability analysis. Numerical simulations and experimental results obtained with the microdiving agent demonstrate the efficacy of the proposed approach and its suitableness for both stabilization and trajectory tracking problems.


2014 ◽  
Vol 697 ◽  
pp. 419-424
Author(s):  
Ze Fan Cai ◽  
Dao Ping Huang

This paper introduces the system structure of neural network in fault diagnosis, and summarizes some applications of neural network in fault diagnosis. The most commonly used neural network in fault diagnosis is BP network. The second is RBF network and the third is ART. For each neural network, the paper will discuss the neural network, and the introduce some applications. It also introduces the combination of neural networks and other techniques. In the last part, this paper points out the development trend of the neural network in fault diagnosis.


2014 ◽  
Vol 8 (6) ◽  
pp. 888-895 ◽  
Author(s):  
Dang Xuan Ba ◽  
◽  
Kyoung Kwan Ahn ◽  
Nguyen Trong Tai ◽  

This paper presents an integral-type adaptive sliding mode controller integrated into a neural network for position-tracking control of a pneumatic muscle actuator testing system. Stability of the closed-loop system is covered by the sliding mode algorithm while both control error and control energy are minimized by the neural network. With only four weight factors in the hidden layer and two weight factors in the output layer, the network provides a very high calculation speed. Then, the approach is successfully verified on a real-time system under different working conditions. By comparing it with a proportional-integraldifferential controller on the same system and under the same working conditions, the effectiveness of the designed controller is confirmed.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Xue Han

In order to track the desired path under unknown parameters and environmental disturbances, an adaptive backstepping sliding mode control algorithm with a neural estimator is proposed for underactuated ships considering both ship-bank interaction effect and shift angle. Using the features of radial basis function neural network, which can approximate arbitrary function, the unknown parameters of the ship model and environmental disturbances are estimated. The trajectory tracking errors include stabilizing sway and surge velocities errors. Based on the Lyapunov stability theory, the tracking error will converge to zero and the system is asymptotically stable. The controlled trajectory is contractive and asymptotically tends to the desired position and attitude. The results show that compared with the basic sliding mode control algorithm, the overshoot of the adaptive backstepping sliding mode control with neural estimator is smaller and the regulation time of the system is shorter. The ship can adjust itself and quickly reach its desired position under disturbances. This shows that the designed RBF neural network observer can track both the mild level 3 sea state and the bad level 5 sea state, although the wave disturbance has relatively fast time-varying disturbance. The algorithm has good tracking performance and can realize the accurate estimation of wave disturbance, especially in bad sea conditions.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 931 ◽  
Author(s):  
Cai Luo ◽  
Zhenpeng Du ◽  
Leijian Yu

Unmanned aerial vehicles (UAVs) demonstrate excellent manoeuvrability in cluttered environments, which makes them a suitable platform as a data collection and parcel delivering system. In this work, the attitude and position control challenges for a drone with a package connected by a wire is analysed. During the delivering task, it is very difficult to eliminate the external unpredictable disturbances. A robust neural network-based backstepping sliding mode control method is designed, which is capable of monitoring the drone’s flight path and desired attitude with a suspended cable attached. The convergence of the position and attitude errors together with the Lyapunov function are employed to attest to the robustness of the nonlinear transportation platform. The proposed control system is tested with a simulation and in an outdoor environment. The simulation and open field test results for the UAV transportation platform verify the controllers’ reliability.


2019 ◽  
Vol 16 (2) ◽  
pp. 172988141982996 ◽  
Author(s):  
Lili Wan ◽  
Yixin Su ◽  
Huajun Zhang ◽  
Yongchuan Tang ◽  
Binghua Shi

A scheme to solve the course keeping problem of the unmanned surface vehicle with nonlinear and uncertain characteristics and unknown external disturbances is investigated in this article. The chattering existing in global fast terminal sliding mode controller in solving the course keeping problem of the unmanned surface vehicle with external disturbance is analyzed. To reduce the chattering and eliminate the influence of the unknown disturbance, an adaptive global fast terminal sliding mode controller based on radial basis function neural network is developed. The equivalent control that usually requires a precise model information of the system is computed using the radial basis function neural network. The weights of the neural network are online adjusted according to the adaptive law that is derived using Lyapunov method to ensure the stability of the closed-loop system. Using the online learning of the neural network, the nonlinear uncertainty of the system and the unknown disturbance of external environment are compensated, and the system chattering is reduced effectively as well. The simulation results demonstrate that the proposed controller can achieve a good performance regarding the fast response and smooth control.


Author(s):  
Chen Zhiyong ◽  
Chen Li

The control problem of space-based robot system with uncertain parameters and external disturbances is considered. With Lagrangian formulation and augmentation approach, the dynamic equations of space-based robot system in workspace are derived. Based on the results, an adaptive neural network compensating control scheme for coordinated motion between the base’s attitude and end-effector of space-based robot system is developed. It is based on the inertia-related method, and incorporates a neural network controller to compensate the uncertainties. The closed-loop system stability with the neural network adapted on-line is discussed in detail through the Lyapunov stability approach. Comparing with many adaptive and robust control schemes, the controller proposed does not require one to determine the regression matrix for space robot system and then avoids tedious computations. Numerical simulations are provided to show the effectiveness of the approach.


Sign in / Sign up

Export Citation Format

Share Document