positional uncertainty
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 18)

H-INDEX

15
(FIVE YEARS 2)

GeoHealth ◽  
2021 ◽  
Author(s):  
Laura K. Thompson ◽  
Bryan Langholz ◽  
Daniel W. Goldberg ◽  
John P. Wilson ◽  
Beate Ritz ◽  
...  

2021 ◽  
Author(s):  
Vera Zoest ◽  
Jasper Buul ◽  
Frank Osei ◽  
Alfred Stein

2021 ◽  
Author(s):  
Nigel Clegg ◽  
◽  
Alban Duriez ◽  
Vladimir Kiselev ◽  
Supriya Sinha ◽  
...  

Mature fields contain wells drilled over decades, resulting in a complex distribution of cased hole from active producers, injectors, and abandoned wells. Continued field development requires access to bypassed pay and the drilling of new wells that must be threaded between the existing subterranean infrastructure. It is therefore important to know the position of any offset wells relative to a well being drilled so collision can be avoided. A well’s position is determined by directional survey points, for which the measurement error accumulates along the length of the well, increasing the uncertainty associated with the well position. The positional uncertainty is greater in wells drilled with older generations of surveying tools. Thus, a new well may be required to enter the ellipse of uncertainty representing the potential position of an older well, risking collision, to be able to reach desired targets in more distal parts of the reservoir. A potential solution to reduce collision risks is ultra-deep electromagnetic (EM) logging-while-drilling (LWD) tools, whose measurements are strongly influenced by proximity to metal casing and liners. This paper presents 3D inversion results of ultra-deep EM data from a development well in a mature field, which were used to identify a nearby cased well. Due to the large effect of casing on the measured EM field, it is important to validate the 3D results; this has been achieved using a synthetic modelling approach and assessment of azimuthal EM measurements. Models were created with casing positioned within resistive media with similar properties to those seen in the studied cases. Inverting these models allows testing of the inversion algorithm to show that it is providing a good representation of the cased well’s position relative to the newly drilled well. Further analysis of recorded and synthetic data showed that the raw EM field is strongly influenced as the casing is approached. The casing can be seen to clearly affect the EM field measurements when it is in the region of 10 to 15 m ahead of the EM transmitter, with the effect increasing in magnitude as this distance diminishes. Modelling shows that the EM field measurements behave in a predictable manner. As the ultra-deep EM tool approaches a cased well, it is possible to determine whether the casing is above, below, or critically, directly in line with the planned trajectory of the new well. Existing subterranean infrastructure can pose a major hazard to the drilling of new wells. Being able to identify an old well ahead of the bit using ultra-deep EM measurements would allow a new well to be steered away from the hazard or drilling stopped, preventing a collision. In addition, this may also allow the drilling of well paths that would otherwise be impossible to drill, due to the limitations imposed by positional uncertainty of the new and offset wells. This use of ultra-deep resistivity technology takes it beyond its more traditional benefits in well placement and formation evaluation, making it useful for improving well drilling safety.


2020 ◽  
Vol 287 (1936) ◽  
pp. 20201898
Author(s):  
Rickesh N. Patel ◽  
Thomas W. Cronin

Mantis shrimp commonly occupy burrows in shallow, tropical waters. These habitats are often structurally complex where many potential landmarks are available. Mantis shrimp of the species Neogonodactylus oerstedii return to their burrows between foraging excursions using path integration, a vector-based navigational strategy that is prone to accumulated error. Here, we show that N. oerstedii can navigate using landmarks in parallel with their path integration system, correcting for positional uncertainty generated when navigating using solely path integration. We also report that when the path integration and landmark navigation systems are placed in conflict, N. oerstedii will orientate using either system or even switch systems enroute. How they make the decision to trust one navigational system over another is unclear. These findings add to our understanding of the refined navigational toolkit N. oerstedii relies upon to efficiently navigate back to its burrow, complementing its robust, yet error prone, path integration system with landmark guidance.


2020 ◽  
Vol 150 ◽  
pp. S85-S86
Author(s):  
Zhang Tina (Wanting) ◽  
Haley Clark ◽  
Steven Thomas ◽  
Robert Olson ◽  
Roy Ma ◽  
...  

i-Perception ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 204166952093910
Author(s):  
Jean Lorenceau ◽  
Patrick Cavanagh

When an annulus in fast apparent motion reverses its contrast over time, the foveal and peripheral percepts are strikingly different. In central vision, the annulus appears to follow the same path as an annulus without flicker, whereas in the periphery, the stimulus seems to randomly jump across the screen. The illusion strength depends on motion speed and reversal rate. Our observations suggest that it results from a balance between conflicting phi and reverse-phi motion, positional uncertainty, and attention. In addition to illustrating the differences between central and peripheral motion processing, this illusion shows that both discrete positional sampling and motion energy combine to generate motion percepts, although with eccentricity dependent weights that are themselves affected by attention.


2020 ◽  
Vol 638 ◽  
pp. A128 ◽  
Author(s):  
E. J. Marchesini ◽  
A. Paggi ◽  
F. Massaro ◽  
N. Masetti ◽  
R. D’Abrusco ◽  
...  

Context. Nearly 50% of all sources detected by the Fermi Large Area Telescope are classified as blazars or blazar candidates, one of the most elusive classes of active galaxies. Additional blazars can also be hidden within the sample of unidentified or unassociated γ-ray sources (UGSs) that constitute about one-third of all gamma-ray sources detected to date. We recently confirmed that the large majority of Fermi blazars of the BL Lac subclass have an X-ray counterpart. Aims. Using the X-ray properties of a BL Lac training set and combining these with archival multifrequency information, we aim to search for UGSs that could have a BL Lac source within their γ-ray positional uncertainty regions. Methods. We reduced and analyzed the Swift X-ray observations of a selected sample of 327 UGSs. We then compared the X-ray fluxes and hardness ratios of all sources detected in the pointed fields with those of known Fermi BL Lacs. Results. We find at least one X-ray source, lying within the γ-ray positional uncertainty at 95% confidence level, for 223 UGSs and a total of 464 X-ray sources in all fields analyzed. The X-ray properties of a large fraction of them, eventually combined with radio, infrared, and optical information, exhibit BL Lac multi-frequency behavior, thus allowing us to select high-confidence BL Lac candidates; some of them were recently observed during our optical spectroscopic campaign which confirmed their nature. Conclusions. We find that out of 50 X-ray sources that were confirmed as BL Lacs through optical spectroscopy, 12 do not show canonical mid-infrared or radio BL Lac properties. This indicates that the selection of X-ray BL Lac candidates is a strong method to find new counterparts within Fermi UGSs. Finally, we pinpoint a sample of 32 Swift/XRT candidate counterparts to Fermi UGSs that are most likely BL Lac objects.


Sign in / Sign up

Export Citation Format

Share Document