scholarly journals Landmark navigation in a mantis shrimp

2020 ◽  
Vol 287 (1936) ◽  
pp. 20201898
Author(s):  
Rickesh N. Patel ◽  
Thomas W. Cronin

Mantis shrimp commonly occupy burrows in shallow, tropical waters. These habitats are often structurally complex where many potential landmarks are available. Mantis shrimp of the species Neogonodactylus oerstedii return to their burrows between foraging excursions using path integration, a vector-based navigational strategy that is prone to accumulated error. Here, we show that N. oerstedii can navigate using landmarks in parallel with their path integration system, correcting for positional uncertainty generated when navigating using solely path integration. We also report that when the path integration and landmark navigation systems are placed in conflict, N. oerstedii will orientate using either system or even switch systems enroute. How they make the decision to trust one navigational system over another is unclear. These findings add to our understanding of the refined navigational toolkit N. oerstedii relies upon to efficiently navigate back to its burrow, complementing its robust, yet error prone, path integration system with landmark guidance.

Author(s):  
Rickesh N. Patel ◽  
Thomas W. Cronin

SummaryMantis shrimp are predatory crustaceans that commonly occupy burrows in shallow, tropical waters worldwide. Most of these animals inhabit structurally complex, benthic environments where many potential landmarks are available. Mantis shrimp of the species Neogonodactylus oerstedii return to their burrows between foraging excursions using path integration, a vector-based navigational strategy that is prone to accumulated error. Here we show that N. oerstedii can navigate using landmarks in parallel with their path integration system, offseting error generated when navigating using solely path integration. We also report that when the path integration and landmark navigation systems are placed in conflict, N. oerstedii will orient using either system or even switch systems enroute. How they make the decision to trust one navigational system over another is unclear. These findings add to our understanding of the refined navigational toolkit N. oerstedii relies upon to efficiently navigate back to its burrow, complementing its robust, yet error prone, path integration system with landmark guidance.


2020 ◽  
Author(s):  
Rickesh N. Patel ◽  
Thomas W. Cronin

AbstractMantis shrimp of the species Neogonodactylus oerstedii occupy small burrows in shallow waters throughout the Caribbean. These animals use path integration, a vector-based navigation strategy, to return to their homes while foraging. Here we report that path integration in N. oerstedii is prone to error accumulated during outward foraging paths and we describe the search behavior that N. oerstedii employs after it fails to locate its home following the route provided by its path integrator. This search behavior forms continuously expanding, non-oriented loops that are centered near the point of search initiation. The radius of this search is apparently scaled to the animal’s accumulated error during path integration, improving the effectiveness of the search. The search behaviors exhibited by N. oerstedii bear a striking resemblance to search behaviors in other animals, offering potential avenues for the comparative examination of search behaviors and how they are optimized in disparate taxa.Summary StatementMantis shrimp use path integration, an error-prone navigational strategy, when travelling home. When path integration fails, mantis shrimp employ a stereotyped yet flexible search pattern to locate their homes.


1995 ◽  
Vol 73 (6) ◽  
pp. 483-497 ◽  
Author(s):  
Georg Hartmann ◽  
R�diger Wehner

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Xiyuan Chen ◽  
Yuan Xu ◽  
Qinghua Li

The inertial navigation systems (INS)/wireless sensor network (WSN) integration system for mobile robot is proposed for navigation information indoors accurately and continuously. The Kalman filter (KF) is widely used for real-time applications with the aim of gaining optimal data fusion. In order to improve the accuracy of the navigation information, this work proposed an adaptive extended Kalman smoothing (AEKS) which utilizes inertial measuring units (IMUs) and ultrasonic positioning system. In this mode, the adaptive extended Kalman filter (AEKF) is used to improve the accuracy of forward Kalman filtering (FKF) and backward Kalman filtering (BKF), and then the AEKS and the average filter are used between two output timings for the online smoothing. Several real indoor tests are done to assess the performance of the proposed method. The results show that the proposed method can reduce the error compared with the INS-only, least squares (LS) solution, and AEKF.


2010 ◽  
Vol 6 (2) ◽  
pp. 83-88
Author(s):  
Wong Kitt ◽  
Ali Chekima ◽  
Jamal Dhargam ◽  
Farrah Wong ◽  
Tamer Tabet

Navigational sensors are evolving both on a commercial and research level. However, the limitation still lies in the accuracy of the respective sensors. For a navigation system to reach a certain accuracy, multi sensors or fusion sensors are used. In this paper, a framework of fuzzy sensor data fusing is proposed to obtain an optimised navigational system. Different types of sensors without a known state of inaccuracy can be fused using the same method proposed. This is demonstrated by fusing compass/accelerometer and GPS signal. GPS has evolved as a choice of navigation method for outdoor autonomous system. Despite it emerging trend and application, one problem remains is that it is still prone to inaccuracies due to environmental factors. These factors are available and evaluated in the GPS receiver architecture. These inaccuracies are available in the extracted NMEA(National Maritime Electronics Association) protocols as SNR (Signal to noise ratio) and HDOP (Horizontal Dillusion of Precision). Dead reckoning sensors on the other hand does not depend on external radio signal coverage and can be used in areas with low coverage. Unfortunately, the errors are unbounded and has an accumulative effect over time.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1079 ◽  
Author(s):  
Di Liu ◽  
Hengjun Wang ◽  
Qingyuan Xia ◽  
Changhui Jiang

GNSS (global navigation satellite system) and SINS (strap-down inertial navigation system) integrated navigation systems have been the apparatus for providing reliable and stable position and velocity information (PV). Commonly, there are two solutions to improve the GNSS/SINS integration navigation system accuracy, i.e., employing GNSS with higher position accuracy in the integration system or utilizing the high-grade inertial measurement unit (IMU) to construct the integration system. However, technologies such as RTK (real-time kinematic) and PPP (precise point positioning) that improve GNSS positioning accuracy have higher costs and they cannot work under high dynamic environments. Also, an IMU with high accuracy will lead to a higher cost and larger volume, therefore, a low-cost method to enhance the GNSS/SINS integration accuracy is of great significance. In this paper, multiple receivers based on the GNSS/SINS integrated navigation system are proposed with the aim of providing more precise PV information. Since the chip-scale receivers are cheap, the deployment of multiple receivers in the GNSS/SINS integration will not significantly increase the cost. In addition, two different filtering methods with central and cascaded structure are employed to process the multiple receivers and SINS integration. In the centralized integration filter method, measurements from multiple receivers are directly processed to estimate the SINS errors state vectors. However, the computation load increases heavily due to the rising dimension of the measurement vector. Therefore, a cascaded integration filter structure is also employed to distribute the processing of the multiple receiver and SINS integration. In the cascaded processing method, each receiver is regarded as an individual “sensor”, and a standard federated Kalman filter (FKF) is implemented to obtain an optimal estimation of the navigation solutions. In this paper, a simulation and a field tests are carried out to assess the influence of the number of receivers on the PV accuracy. A detailed analysis of these position and velocity results is presented and the improvements in the PV accuracy demonstrate the effectiveness of the proposed method.


Hippocampus ◽  
2012 ◽  
Vol 22 (8) ◽  
pp. 1770-1780 ◽  
Author(s):  
Mathew A. Harris ◽  
Thomas Wolbers

Sign in / Sign up

Export Citation Format

Share Document