low coherence interferometry
Recently Published Documents


TOTAL DOCUMENTS

495
(FIVE YEARS 46)

H-INDEX

31
(FIVE YEARS 2)

Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2392
Author(s):  
Susanna Esposito ◽  
Sonia Bianchini ◽  
Alberto Argentiero ◽  
Riccardo Gobbi ◽  
Claudio Vicini ◽  
...  

Several studies have shown that in recent years incidence of acute otitis media (AOM) has declined worldwide. However, related medical, social, and economic problems for patients, their families, and society remain very high. Better knowledge of potential risk factors for AOM development and more effective preventive interventions, particularly in AOM-prone children, can further reduce disease incidence. However, a more accurate AOM diagnosis seems essential to achieve this goal. Diagnostic uncertainty is common, and to avoid risks related to a disease caused mainly by bacteria, several children without AOM are treated with antibiotics and followed as true AOM cases. The main objective of this manuscript is to discuss the most common difficulties that presently limit accurate AOM diagnosis and the new approaches and technologies that have been proposed to improve disease detection. We showed that misdiagnosis can be dangerous or lead to relevant therapeutic mistakes. The need to improve AOM diagnosis has allowed the identification of a long list of technologies to visualize and evaluate the tympanic membrane and to assess middle-ear effusion. Most of the new instruments, including light field otoscopy, optical coherence tomography, low-coherence interferometry, and Raman spectroscopy, are far from being introduced in clinical practice. Video-otoscopy can be effective, especially when it is used in association with telemedicine, parents’ cooperation, and artificial intelligence. Introduction of otologic telemedicine and use of artificial intelligence among pediatricians and ENT specialists must be strongly promoted in order to reduce mistakes in AOM diagnosis.


2021 ◽  
pp. 123-130
Author(s):  
Christopher Taudt

AbstractThe third intended application for the proposed dispersion-encoded low-coherence interferometry is the evaluation of thin-film characteristics on substrate materials. Due to the usage of thin-film technologies in high-volume production in e.g. the photovoltaics and semiconductor industry, process monitoring becomes relevant in order to ensure functional parameters such as solar cell efficiency, [289]. In this context, film thickness as well as film homogeneity over large areas are important criteria for quality assurance.


2021 ◽  
Vol 2127 (1) ◽  
pp. 012034
Author(s):  
L Burmak

Abstract The basic principles of measurements in spectral-domain low coherence interferometry (optical coherence tomography, optical coherence microscopy) based on acousto-optic filtration are discussed. Relations for extracting information about sample’s spatial structure from a series of spectral interference images acquired with spectral tuning are given. The implementation of measurements in spectral domain using acousto-optic filtration is considered. The effect of the acousto-optic filter characteristics on depth measurement range and depth resolution is estimated. The results of modelling of the interference signal and experimental data obtained in the scheme with acousto-optic filtration of interfering beams at the output of Michelson interferometer are presented.


2021 ◽  
Vol 11 (16) ◽  
pp. 7556
Author(s):  
Fabian Zechel ◽  
Julia Jasovski ◽  
Robert H. Schmitt

Surface laser structuring of electrical steel sheets can be used to manipulate their magnetic properties, such as energy losses and contribute to a more efficient use. This requires a technology such as low coherence interferometry, which makes it possible to be coupled directly into the existing beam path of the process laser and enables the possibility for an 100% inspection during the process. It opens the possibility of measuring directly in the machine, without removing the workpiece, as well as during the machining process. One of the biggest challenges in integrating an LCI measurement system into an existing machine is the need to use a different wavelength than the one for which the optical components were designed. This results in an offset between the measurement and processing spot. By integrating an additional scanning system exclusively for the measuring beam and developing a compensation model for the non-linear spot offset, this can be adaptively corrected by up to 98.9% so that the ablation point can be measured. The simulation model can also be easily applied to other systems with different components and at the same time allows further options for in-line quality assurance.


2021 ◽  
Author(s):  
zong yi ◽  
Mingliang Duan ◽  
Rihong Zhu ◽  
Lei Chen ◽  
Jianxin Li

Sign in / Sign up

Export Citation Format

Share Document