laser structuring
Recently Published Documents


TOTAL DOCUMENTS

200
(FIVE YEARS 51)

H-INDEX

16
(FIVE YEARS 4)

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 329
Author(s):  
Apurba Ray ◽  
Jenny Roth ◽  
Bilge Saruhan

The rapidly developing demand for lightweight portable electronics has accelerated advanced research on self-powered microsystems (SPMs) for peak power energy storage (ESs). In recent years, there has been, in this regard, a huge research interest in micro-supercapacitors for microelectronics application over micro-batteries due to their advantages of fast charge–discharge rate, high power density and long cycle-life. In this work, the optimization and fabrication of micro-supercapacitors (MSCs) by means of laser-induced interdigital structured graphene electrodes (LIG) has been reported. The flexible and scalable MSCs are fabricated by CO2-laser structuring of polyimide-based Kapton ® HN foils at ambient temperature yielding interdigital LIG-electrodes and using polymer gel electrolyte (PGE) produced by polypropylene carbonate (PPC) embedded ionic liquid of 1-ethyl-3-methyl-imidazolium-trifluoromethansulphonate [EMIM][OTf]. This MSC exhibits a wide stable potential window up to 2.0 V, offering an areal capacitance of 1.75 mF/cm2 at a scan rate of 5.0 mV/s resulting in an energy density (Ea) of 0.256 µWh/cm2 @ 0.03 mA/cm2 and power density (Pa) of 0.11 mW/cm2 @0.1 mA/cm2. Overall electrochemical performance of this LIG/PGE-MSC is rounded with a good cyclic stability up to 10,000 cycles demonstrating its potential in terms of peak energy storage ability compared to the current thin film micro-supercapacitors.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7513
Author(s):  
Albena Daskalova ◽  
Emil Filipov ◽  
Liliya Angelova ◽  
Radostin Stefanov ◽  
Dragomir Tatchev ◽  
...  

The use of laser processing for the creation of diverse morphological patterns onto the surface of polymer scaffolds represents a method for overcoming bacterial biofilm formation and inducing enhanced cellular dynamics. We have investigated the influence of ultra-short laser parameters on 3D-printed poly-ε-caprolactone (PCL) and poly-ε-caprolactone/hydroxyapatite (PCL/HA) scaffolds with the aim of creating submicron geometrical features to improve the matrix biocompatibility properties. Specifically, the present research was focused on monitoring the effect of the laser fluence (F) and the number of applied pulses (N) on the morphological, chemical and mechanical properties of the scaffolds. SEM analysis revealed that the femtosecond laser treatment of the scaffolds led to the formation of two distinct surface geometrical patterns, microchannels and single microprotrusions, without triggering collateral damage to the surrounding zones. We found that the microchannel structures favor the hydrophilicity properties. As demonstrated by the computer tomography results, surface roughness of the modified zones increases compared to the non-modified surface, without influencing the mechanical stability of the 3D matrices. The X-ray diffraction analysis confirmed that the laser structuring of the matrices did not lead to a change in the semi-crystalline phase of the PCL. The combinations of two types of geometrical designs—wood pile and snowflake—with laser-induced morphologies in the form of channels and columns are considered for optimizing the conditions for establishing an ideal scaffold, namely, precise dimensional form, mechanical stability, improved cytocompatibility and antibacterial behavior.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shahbaz Ahmad ◽  
M. Egilmez ◽  
M. Iqbal ◽  
T. Ibrahim ◽  
M. Khamis ◽  
...  

Ultrafast laser structuring has proven to alter the wettability performance of surfaces drastically due to controlled modification of the surface roughness and energy. Surface alteration can be achieved also by coating the surfaces with functional materials with enhanced durability. On this line, robust and tunable surface wettability performance can be achieved by the synergic effects of ultrafast laser structuring and coating. In this work, femtosecond laser-structured stainless steel (SS-100) meshes were used to host the growth of NaAlSi2O6–H2O zeolite films. Contact angle measurements were carried on pristine SS-100 meshes, zeolite-coated SS-100 meshes, laser-structured SS-100 meshes, and zeolite-coated laser-structured SS-100 meshes. Enhanced hydrophilic behavior was observed in the zeolite-coated SS-100 meshes (contact angle 72°) and in laser-structured SS-100 meshes (contact angle 41°). On the other hand, superior durable hydrophilic behavior was observed for the zeolite-coated laser-structured SS-100 meshes (contact angle 14°) over an extended period and reusability. In addition, the zeolite-coated laser-structured SS-100 meshes were subjected to oil–water separation tests and revealed augmented effectuation for oil–water separation.


2021 ◽  
Vol 303 ◽  
pp. 117693
Author(s):  
Johannes Kriegler ◽  
Lucas Hille ◽  
Sandro Stock ◽  
Ludwig Kraft ◽  
Jan Hagemeister ◽  
...  

2021 ◽  
Vol 2086 (1) ◽  
pp. 012010
Author(s):  
N A Demidenko ◽  
A V Kuksin ◽  
E S Davydova ◽  
V A Zaborova ◽  
L P Ichkitidze ◽  
...  

Abstract Nowadays there is a great need for the development of flexible strain sensors that can register human body’s movements. In the field of wearable and smart electronics such sensors are actively being developed. Resistive-type flexible sensors are the easiest to manufacture. Their mechanism of sensitivity to deformations is based on a change in electrical resistance during deformations. In this work, we have developed the functional material for strain sensor with high tensile properties, strength and electrical conductivity. This material based on a matrix of silicone elastomer and a multi-walled carbon nanotubes (MCNTs) filler. The material showed a high elongation of 950 % with a tensile strength of 1.437 MPa. The manufacturing process included laser structuring of MCNTs to form an electrically conductive network. The linear gauge factor was 3.4, and the angular gauge factor was 0.26.


2021 ◽  
pp. 151612
Author(s):  
Rahul A. Rajan ◽  
Srinivasa Rao Konda ◽  
Chaudry Sajed Saraj ◽  
Yu Hang Lai ◽  
Gopal Verma ◽  
...  

2021 ◽  
Vol 7 (2) ◽  
pp. 713-716
Author(s):  
Swen Grossmann ◽  
Sabine Illner ◽  
Robert Ott ◽  
Grit Rhinow ◽  
Carsten Tautorat ◽  
...  

Abstract Bioresorbable nanofiber nonwovens with their fascinating properties provide a wide range of potential biomedical applications. Modification of the material enables the adjustment of mechanical and biological characteristics depending on the desired application. Due to the nanosized fiber network, post-production structuring is very challenging. Within this study, we use femtosecond laser technology for structuring permeable and resorbable electrospun poly-L-lactide (PLLA) membranes. We show that this post-production process can be used without disturbing the fiber network near the structured areas. Furthermore, the modification of the water permeability and mechanical characteristics due to the laser structuring was investigated. The results prove femtosecond laser technology to be a promising method for the adjustment of the membrane properties and which in consequence can help to optimize cell adhesion, enable revascularization and open up applications of nanofiber membranes in personalized medicine.


2021 ◽  
pp. 151170
Author(s):  
Guodong Zhang ◽  
Razvan Stoian ◽  
Rui Lou ◽  
Tianqu Chen ◽  
Guangying Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document