regulatory genomics
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 1)

2020 ◽  
Vol 24 ◽  
pp. 153-154
Author(s):  
Ziv Bar-Joseph ◽  
Itamar Simon

2020 ◽  
Vol 3 (1) ◽  
pp. 315-338
Author(s):  
Mira Barshai ◽  
Eitamar Tripto ◽  
Yaron Orenstein

Deep neural networks have been revolutionizing the field of machine learning for the past several years. They have been applied with great success in many domains of the biomedical data sciences and are outperforming extant methods by a large margin. The ability of deep neural networks to pick up local image features and model the interactions between them makes them highly applicable to regulatory genomics. Instead of an image, the networks analyze DNA and RNA sequences and additional epigenomic data. In this review, we survey the successes of deep learning in the field of regulatory genomics. We first describe the fundamental building blocks of deep neural networks, popular architectures used in regulatory genomics, and their training process on molecular sequence data. We then review several key methods in different gene regulation domains. We start with the pioneering method DeepBind and its successors, which were developed to predict protein–DNA binding. We then review methods developed to predict and model epigenetic information, such as histone marks and nucleosome occupancy. Following epigenomics, we review methods to predict protein–RNA binding with its unique challenge of incorporating RNA structure information. Finally, we provide our overall view of the strengths and weaknesses of deep neural networks and prospects for future developments.


2020 ◽  
Vol 16 (5) ◽  
Author(s):  
Julie Carnesecchi ◽  
Ingrid Lohmann

2019 ◽  
Author(s):  
Peter K. Koo ◽  
Sharon Qian ◽  
Gal Kaplun ◽  
Verena Volf ◽  
Dimitris Kalimeris

AbstractDeep neural networks (DNNs) have been applied to a variety of regulatory genomics tasks. For interpretability, attribution methods are employed to provide importance scores for each nucleotide in a given sequence. However, even with state-of-the-art DNNs, there is no guarantee that these methods can recover interpretable, biological representations. Here we perform systematic experiments on synthetic genomic data to raise awareness of this issue. We find that deeper networks have better generalization performance, but attribution methods recover less interpretable representations. Then, we show training methods promoting robustness – including regularization, injecting random noise into the data, and adversarial training – significantly improve interpretability of DNNs, especially for smaller datasets.


2019 ◽  
Author(s):  
Yu Zhang ◽  
Shaun Mahony

ABSTRACTGenome segmentation approaches allow us to characterize regulatory states in a given cell type using combinatorial patterns of histone modifications and other regulatory signals. In order to analyze regulatory state differences across cell types, current genome segmentation approaches typically require that the same regulatory genomics assays have been performed in all analyzed cell types. This necessarily limits both the numbers of cell types that can be analyzed and the complexity of the resulting regulatory states, as only a small number of histone modifications have been profiled across many cell types. Data imputation approaches that aim to estimate missing regulatory signals have been applied before genome segmentation. However, this approach is computationally costly and propagates any errors in imputation to produce incorrect genome segmentation results downstream.We present an extension to the IDEAS genome segmentation platform which can perform genome segmentation on incomplete regulatory genomics dataset collections without using imputation. Instead of relying on imputed data, we use an expectation-maximization approach to estimate marginal density functions within each regulatory state. We demonstrate that our genome segmentation results compare favorably with approaches based on imputation or other strategies for handling missing data. We further show that our approach can accurately impute missing data after genome segmentation, reversing the typical order of imputation/genome segmentation pipelines. Finally, we present a new 2D genome segmentation analysis of 127 human cell types studied by the Roadmap Epigenomics Consortium. By using an expanded set of chromatin marks that have been profiled in subsets of these cell types, our new segmentation results capture a more complex picture of combinatorial regulatory patterns that appear on the human genome.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 121
Author(s):  
Enrico Ferrero

The identification of therapeutic targets is a critical step in the research and developement of new drugs, with several drug discovery programmes failing because of a weak linkage between target and disease. Genome-wide association studies and large-scale gene expression experiments are providing insights into the biology of several common diseases, but the complexity of transcriptional regulation mechanisms often limits our understanding of how genetic variation can influence changes in gene expression. Several initiatives in the field of regulatory genomics are aiming to close this gap by systematically identifying and cataloguing regulatory elements such as promoters and enhacers across different tissues and cell types. In this Bioconductor workflow, we will explore how different types of regulatory genomic data can be used for the functional interpretation of disease-associated variants and for the prioritisation of gene lists from gene expression experiments.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 121 ◽  
Author(s):  
Enrico Ferrero

The identification of therapeutic targets is a critical step in the research and developement of new drugs, with several drug discovery programmes failing because of a weak linkage between target and disease. Genome-wide association studies and large-scale gene expression experiments are providing insights into the biology of several common and complex diseases, but the complexity of transcriptional regulation mechanisms often limit our understanding of how genetic variation can influence changes in gene expression. Several initiatives in the field of regulatory genomics are aiming to close this gap by systematically identifying and cataloguing regulatory elements such as promoters and enhacers across different tissues and cell types. In this Bioconductor workflow, we will explore how different types of regulatory genomic data can be used for the functional interpretation of disease-associated variants and for the prioritisation of gene lists from gene expression experiments.


2015 ◽  
Vol 33 (8) ◽  
pp. 825-826 ◽  
Author(s):  
Yongjin Park ◽  
Manolis Kellis

Sign in / Sign up

Export Citation Format

Share Document