immersive learning
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 112)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
C. H. Wu ◽  
Y. M. Tang ◽  
Y. P. Tsang ◽  
K. Y. Chau

Science, technology, engineering and mathematics (STEM) education is a globalized trend of equipping students to facilitate technological and scientific developments. Among STEM education, technology education (TE) plays a significant role in teaching applied knowledge and skills to create and add value to systems and products. In higher education, the learning effectiveness of the TE assisted by the immersive technologies is an active research area to enhance the teaching quality and learning performance. In this study, a taught subject of radio frequency identification (RFID) assisted by using mixed reality technologies in a higher education institution was examined, while the soft systems methodology (SSM) was incorporated to evaluate the changes in learning performance. Under the framework of SSM, stakeholders’ perceptions toward immersive learning and RFID education are structured. Thus, a rich picture for teaching activities is established for subject control, monitoring, and evaluation. Subsequently, the design of TE does not only satisfy the students’ needs but also requirements from teachers, industries, and market trends. Finally, it is found that SSM is an effective approach in designing courses regarding hands-on technologies, and the use of immersive technologies improves the learning performance for acquiring fundamental knowledge and application know-how.


2021 ◽  
Vol 30 (20) ◽  
pp. 1198-1202
Author(s):  
Aby Mitchell ◽  
Georgiana Assadi

The COVID-19 pandemic has affected the delivery of nursing training in higher education and how workforce development programmes are delivered. Using simulated practice is an opportunity for experiential and immersive learning in a safe and supported environment that replaces real life. This article discusses the use of simulation in nurse education to improve patient safety.


2021 ◽  
Author(s):  
Filipe Fernandes ◽  
Diego Castro ◽  
Claudia Werner

Author(s):  
Tycho T. de Back ◽  
Angelica M. Tinga ◽  
Max M. Louwerse

AbstractImmersive virtual reality is increasingly regarded as a viable means to support learning. Cave Automatic Virtual Environments (CAVEs) support immersive learning in groups of learners, and is of potential interest for educational institutions searching for novel ways to bolster learning in their students. In previous work we have shown that the use of a CAVE-based virtual learning environment yielded higher learning gains compared to conventional textbook study. Yet, few prior studies have explored the circumstances that yield a trade-off between learning gains and the practical feasibility of providing immersive learning to large student numbers. To gain insight into these circumstances the current study examined two factors: (1) group size (small, medium and large), and (2) time of application (pre-, mid- and late-term of a course). Results indicated learning gains were present for all group sizes and application time periods, with highest learning gains in smaller groups. Learning gains were consistent across application time periods. Additionally, structural equation modeling was applied to assess how learning may result from the use of immersive virtual reality. Results indicated technological virtual reality features predicted learning outcomes via self-reported usability but less so via self-reported presence. Based on the findings, recommendations are presented for effective immersive learning for different group size and application time period configurations. Taken together, the current study elucidates factors affecting learning in immersive virtual reality and facilitates its use in educational practice.


2021 ◽  
Vol 18 (2) ◽  
pp. 152-161
Author(s):  
Alexey I. Azevich

Problem and goal. Virtual, augmented mixed reality and augmented virtuality are becoming integral attributes of the immersive educational environment, disposed to continuous learning and comprehensive development. The relevance of the study of models of using immersive technologies in the activities of a computer science teacher is beyond doubt, because they are the real embodiment of new methodological ideas and approaches. Methodology. In the course of the research, the analysis of models of immersive learning technologies for the practical activities of a computer science teacher was carried out. On its basis, a set of computer tools and equipment has been proposed that allows introducing immersive technologies into educational practice. Results. Methodological recommendations on the use of virtual, augmented and mixed reality technologies both in informatics lessons and after school hours are presented. The key topics of the computer science program, in which it is advisable to use immersive technologies, have been identified. Methodological approaches to the transformation of informatics teaching in the context of digitalization of education have been formulated. Conclusion. The results of the study indicate that immersive learning technologies can be successfully applied both in informatics lessons and outside the classroom. They not only contribute to the immersion of students in an interactive environment, but also increase the interest, motivation and quality of their knowledge. Lessons using immersive technologies open up new opportunities for a computer science teacher for professional growth, methodological and subject self-improvement.


Sign in / Sign up

Export Citation Format

Share Document