chilled water system
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 21)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 173 ◽  
pp. 112906
Author(s):  
Lavinia Vicini ◽  
Nicolás Schiliuk ◽  
Eugenio Coscarelli ◽  
Giovanni Dell'Orco ◽  
Gianfranco Caruso

Author(s):  
Renata Portela de Abreu ◽  
Victor Hugo Lobo Correia ◽  
Atílio Barbosa Lourenço ◽  
Adriano da Silva Marques ◽  
Monica Carvalho

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3608
Author(s):  
Yang Yuan ◽  
Neng Zhu ◽  
Haizhu Zhou ◽  
Hai Wang

To enhance the energy performance of a central air-conditioning system, an effective control method for the chilled water system is always essential. However, it is a real challenge to distribute exact cooling energy to multiple terminal units in different floors via a complex chilled water network. To mitigate hydraulic imbalance in a complex chilled water system, many throttle valves and variable-speed pumps are installed, which are usually regulated by PID-based controllers. Due to the severe hydraulic coupling among the valves and pumps, the hydraulic oscillation phenomena often occur while using those feedback-based controllers. Based on a data-calibrated water distribution model which can accurately predict the hydraulic behaviors of a chilled water system, a new Model Predictive Control (MPC) method is proposed in this study. The proposed method is validated by a real-life chilled water system in a 22-floor hotel. By the proposed method, the valves and pumps can be regulated safely without any hydraulic oscillations. Simultaneously, the hydraulic imbalance among different floors is also eliminated, which can save 23.3% electricity consumption of the pumps.


Author(s):  
Renata Portela de Abreu ◽  
Victor Hugo Lobo Correia ◽  
Adriano Marques ◽  
monica carvalho

Sign in / Sign up

Export Citation Format

Share Document