benzyl ethers
Recently Published Documents


TOTAL DOCUMENTS

417
(FIVE YEARS 23)

H-INDEX

36
(FIVE YEARS 3)

2022 ◽  
pp. 39-46
Author(s):  
Ntai M Khoabane ◽  
Elizabeth J Grayson ◽  
Alan M Kenwright ◽  
Manoharan K Pillai

Oligosaccharides have been playing an important role in biological systems. Synthesis of oligosaccharides requires the protection from hydroxyl groups present in the corresponding monosaccharide units. The existing methods of protection have drawbacks, including formation of anomeric mixtures, change in hydrophilicity or lipophilicity and solubility of the products, participation of the protecting groups in the reactions of the core of monosaccharide units, problems associated with chemoselectivity, regioselectivity and overall stereochemical outcomes of reactions. Additionally, there has been a spectral overlap of these protecting groups with carbohydrate core, which yielded more complex spectra. Therefore, the identification and synthesis of suitable alternative protecting groups have received attention in the oligosaccharide synthesis. The objective of the present study was to synthesize various fluorinated benzyl ethers of methyl-α-D-mannopyronoside and to evaluate these ethers as the alternative protecting groups for enhancing NMR resolution in the oligosaccharide synthesis. Various fluorinated benzyl ethers of methyl-α-D-mannopyronoside were prepared through the reaction of methyl-α-D-mannopyronoside with various fluorinated benzyl bromides by using Williamson ether synthesis method. Spectral analysis of these fluorinated benzyl ethers showed that the peaks of methylene carbons shifted to a value of 10-20 parts per million (ppm) to a high field region in the 13C NMR, compared to the non-fluorinated benzyl ether. As a result, the spectral complexity decreased and enhanced the spectral resolution. In this study, we concluded that fluorinated benzyl ethers could be a suitable alternative to the non-fluorinated benzyl ethers to protect the hydroxyl groups of monosaccharides in the synthesis of oligosaccharides.


2021 ◽  
Author(s):  
Cristian Cavedon ◽  
Eric T. Sletten ◽  
Amiera Madani ◽  
Olaf Niemeyer ◽  
Peter H. Seeberger ◽  
...  

Author(s):  
Takuya Matsumoto ◽  
Hiroshi Hagiyama ◽  
Kanetsugu Kuribayashi ◽  
Kazuhito Hioki ◽  
Hikaru Fujita ◽  
...  

BF3–OiPr2 and alkyl benzyl ether combining system enables a chemoselective alkoxyl group transfer in the synthesis of (E)-α-silyl-β-alkoxyvinyl-λ3-iodanes.


Author(s):  
Tzu-Hsuan Kuan ◽  
Trimurtulu Kotipalli ◽  
Cheng-Chun Chen ◽  
Duen-Ren Hou

Bromotrimethylsilane (TMSBr) promoted, intramolecular cyclization of (o-arylethynyl)benzyl ethers to form 1H-isochromenes at room temperature is reported. Further studies indicated that the stability of vinyl carbocations is crucial, similar to the...


Author(s):  
Micaela Heredia ◽  
Marcelo Puiatti ◽  
Roberto A. Rossi ◽  
María E. Budén

A synthetic approach towards 6H-benzo[c]chromene ring under visible light and transition-metal-free conditions has been developed. Benzochromenes are synthesized from the corresponding (2-halobenzyl) phenyl ethers or (2-halophenyl) benzyl ethers using KOtBu...


2020 ◽  
Vol 5 (45) ◽  
pp. 14288-14291
Author(s):  
Zhenpeng Shen ◽  
Zhe Zhao ◽  
Yun‐Lai Ren ◽  
Wenbo Liu ◽  
Xinzhe Tian ◽  
...  

2020 ◽  
Author(s):  
Cristian Cavedon ◽  
Eric T. Sletten ◽  
Amiera Madani ◽  
Olaf Niemeyer ◽  
Peter H. Seeberger ◽  
...  

Protecting groups are key in the synthesis of complex molecules such as carbohydrates to distinguish functional groups of similar reactivity. The harsh conditions required to cleave stable benzyl ether protective groups are not compatible with many other protective and functional groups. The mild, visible light-mediated debenzylation disclosed here renders benzyl ethers orthogonal protective groups. Key to success is the use of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as stoichiometric or catalytic photooxidant such that benzyl ethers can be cleaved in the presence of azides, alkenes, and alkynes. The reaction time for this transformation can be reduced from hours to minutes in continuous flow. <br>


2020 ◽  
Author(s):  
Cristian Cavedon ◽  
Eric T. Sletten ◽  
Amiera Madani ◽  
Olaf Niemeyer ◽  
Peter H. Seeberger ◽  
...  

Protecting groups are key in the synthesis of complex molecules such as carbohydrates to distinguish functional groups of similar reactivity. The harsh conditions required to cleave stable benzyl ether protective groups are not compatible with many other protective and functional groups. The mild, visible light-mediated debenzylation disclosed here renders benzyl ethers orthogonal protective groups. Key to success is the use of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as stoichiometric or catalytic photooxidant such that benzyl ethers can be cleaved in the presence of azides, alkenes, and alkynes. The reaction time for this transformation can be reduced from hours to minutes in continuous flow. <br>


Sign in / Sign up

Export Citation Format

Share Document