weyburn field
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 1)

H-INDEX

8
(FIVE YEARS 0)

Author(s):  
Lin Li ◽  
Jinfeng Ma

A 4D seismic forward model constitutes the foundation of 4D seismic inversion. Here, in combination with the Gassmann equation, the Digby model is improved to calculate the S-wave velocity, and the resulting equation is verified using rock testing results. Then, considering the influences of changes in the pore pressure, CO2 saturation and porosity on the P- and S- wave velocities, rock testing results from a CO2 injection area in the Weyburn field are used to calculate the P- and S-wave velocities of the reservoir. These P- and S-wave velocities are found to overlap under different pressure conditions with or without considering porosity variations. Therefore, two-layer models and well models are developed to simulate synthetic seismograms; the models considering porosity variations may provide greater seismic responses and different Amplitude Versus Offset (AVO) trends in the synthetic seismogram profiles than those without considering porosity variations. Thus, porosity variations must be considered when establishing 4D seismic forward models.


2017 ◽  
Vol 114 ◽  
pp. 5173-5181 ◽  
Author(s):  
Jason D. Laumb ◽  
Kyle A. Glazewski ◽  
John A. Hamling ◽  
Alexander Azenkeng ◽  
Nicholas Kalenze ◽  
...  

2016 ◽  
Vol 54 ◽  
pp. 479-489 ◽  
Author(s):  
Jason D. Laumb ◽  
Kyle A. Glazewski ◽  
John A. Hamling ◽  
Alexander Azenkeng ◽  
Theresa L. Watson

Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. B295-B306 ◽  
Author(s):  
Alexander Duxbury ◽  
Don White ◽  
Claire Samson ◽  
Stephen A. Hall ◽  
James Wookey ◽  
...  

Cap rock integrity is an essential characteristic of any reservoir to be used for long-term [Formula: see text] storage. Seismic AVOA (amplitude variation with offset and azimuth) techniques have been applied to map HTI anisotropy near the cap rock of the Weyburn field in southeast Saskatchewan, Canada, with the purpose of identifying potential fracture zones that may compromise seal integrity. This analysis, supported by modeling, observes the top of the regional seal (Watrous Formation) to have low levels of HTI anisotropy, whereas the reservoir cap rock (composite Midale Evaporite and Ratcliffe Beds) contains isolated areas of high intensity anisotropy, which may be fracture-related. Properties of the fracture fill and hydraulic conductivity within the inferred fracture zones are not constrained using this technique. The predominant orientations of the observed anisotropy are parallel and normal to the direction of maximum horizontal stress (northeast–southwest) and agree closely with previous fracture studies on core samples from the reservoir. Anisotropy anomalies are observed to correlate spatially with salt dissolution structures in the cap rock and overlying horizons as interpreted from 3D seismic cross sections.


Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. R161-R173 ◽  
Author(s):  
Herurisa Rusmanugroho ◽  
George A. McMechan

Inversion of 3D, 9C wide azimuth vertical seismic profiling (VSP) data from the Weyburn Field for 21 independent elastic tensor elements was performed based on the Christoffel equation, using slowness and polarization vectors measured from field data. To check the ability of the resulting elastic tensor to account for the observed data, simulation of the 3C particle velocity seismograms was done using eighth-order, staggered-grid, finite-differencing with the elastic tensor as input. The inversion and forward modeling results were consistent with the anisotropic symmetry of the Weyburn Field being orthorhombic. It was dominated by a very strong, tranverse isotropy with a vertical symmetry axis, superimposed with minor near-vertical fractures with azimuth [Formula: see text] from the inline direction. The predicted synthetic seismograms were very similar to the field VSP data. The examples defined and provided a validation of a complete workflow to recover an elastic tensor from 9C data. The number and values of the nonzero tensor elements identified the anisotropic symmetry present in the neighborhood of a 3C borehole geophone. Computation of parameter correlation matrices allowed evaluation of solution quality through relative parameter independence.


Sign in / Sign up

Export Citation Format

Share Document