active site mutations
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 9)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Noam Erez ◽  
Linda S. Wyatt ◽  
Jeffrey L. Americo ◽  
Wei Xiao ◽  
Bernard Moss

Modified vaccinia virus Ankara (MVA) was derived by repeated passaging in chick fibroblasts, during which deletions and mutations rendered the virus unable to replicate in most mammalian cells. Marker rescue experiments demonstrated that the host range defect could be overcome by replacing DNA that had been deleted from near the left end of the genome. One virus isolate, however, recovered the ability to replicate in monkey BS-C-1 cells but not human cells without added DNA suggesting it arose from a spontaneous mutation. Here we showed that variants with enhanced ability to replicate in BS-C-1 cells could be isolated by blind passaging MVA and that in each there was a point mutation leading to an amino acid substitution in the D10 decapping enzyme. The sufficiency of these single mutations to enhance host range was confirmed by constructing recombinant viruses. The D10 mutations occurred at N- or C-terminal locations distal from the active site, suggesting an indirect effect on decapping or on another previously unknown role of D10. Although increased amounts of viral mRNA and proteins were found in BS-C-1 cells infected with the mutants compared to parental MVA, the increase was much less than the one to two logs higher virus yields. Nevertheless, a contributing role for diminished decapping in overcoming the host range defect was consistent with increased replication and viral protein synthesis in BS-C-1 cells infected with an MVA engineered to have active site mutations that abrogate decapping activity entirely. Optimal decapping may vary depending on the biological context. IMPORTANCE Modified vaccinia virus Ankara (MVA) is an attenuated virus that is approved as a smallpox vaccine and is in clinical trials as a vector for other pathogens. The safety of MVA is due in large part to its inability to replicate in mammalian cells. Although, host-range restriction is considered a stable feature of the virus, we describe the occurrence of spontaneous mutations in MVA that increase replication considerably in monkey BS-C-1 cells but only slightly in human cells. The mutants contain single nucleotide changes that lead to amino acid substitutions in one of the two decapping enzymes. Although the spontaneous mutations are distant from the decapping enzyme active site, engineered active site-mutations also increased virus replication in BS-C-1 cells. The effects of these mutations on the immunogenicity of MVA vectors remain to be determined.


2021 ◽  
Vol 252 ◽  
pp. 117121
Author(s):  
Cristina Alsina ◽  
Enea Sancho-Vaello ◽  
Almudena Aranda-Martínez ◽  
Magda Faijes ◽  
Antoni Planas

2019 ◽  
Vol 15 (5) ◽  
pp. 444-452 ◽  
Author(s):  
Tommaso Cupido ◽  
Rudolf Pisa ◽  
Megan E. Kelley ◽  
Tarun M. Kapoor

2018 ◽  
Author(s):  
Ayşegül Özen ◽  
Kuan-Hung Lin ◽  
Keith P Romano ◽  
Davide Tavella ◽  
Alicia Newton ◽  
...  

AbstractHepatitis C virus rapidly evolves, conferring resistance to direct acting antivirals. While resistance via active site mutations in the viral NS3/4A protease has been well characterized, the mechanism for resistance of non-active site mutations is unclear. R155K and V36M often co-evolve and while R155K alters the electrostatic network at the binding site, V36M is more than 13 Å away. In this study the mechanism by which V36M confers resistance, in the context of R155K, is elucidated with drug susceptibility assays, crystal structures, and molecular dynamics (MD) simulations for three protease inhibitors: telaprevir, boceprevir and danoprevir. The R155K and R155K/V36M crystal structures differ in the α-2 helix and E2 strand near the active site, with alternative conformations at M36 and side chains of active site residues D168 and R123, revealing an allosteric coupling, which persists dynamically in MD simulations, between the distal mutation and the active site. This allosteric modulation validates the network hypothesis and elucidates how distal mutations confer resistance through propagation of conformational changes to the active site.


Sign in / Sign up

Export Citation Format

Share Document