scholarly journals Resistance from Afar: Distal Mutation V36M Allosterically Modulates the Active Site to Accentuate Drug Resistance in HCV NS3/4A Protease

2018 ◽  
Author(s):  
Ayşegül Özen ◽  
Kuan-Hung Lin ◽  
Keith P Romano ◽  
Davide Tavella ◽  
Alicia Newton ◽  
...  

AbstractHepatitis C virus rapidly evolves, conferring resistance to direct acting antivirals. While resistance via active site mutations in the viral NS3/4A protease has been well characterized, the mechanism for resistance of non-active site mutations is unclear. R155K and V36M often co-evolve and while R155K alters the electrostatic network at the binding site, V36M is more than 13 Å away. In this study the mechanism by which V36M confers resistance, in the context of R155K, is elucidated with drug susceptibility assays, crystal structures, and molecular dynamics (MD) simulations for three protease inhibitors: telaprevir, boceprevir and danoprevir. The R155K and R155K/V36M crystal structures differ in the α-2 helix and E2 strand near the active site, with alternative conformations at M36 and side chains of active site residues D168 and R123, revealing an allosteric coupling, which persists dynamically in MD simulations, between the distal mutation and the active site. This allosteric modulation validates the network hypothesis and elucidates how distal mutations confer resistance through propagation of conformational changes to the active site.

2015 ◽  
Vol 43 (5) ◽  
pp. 1023-1032 ◽  
Author(s):  
Thomas Stockner ◽  
Anna Mullen ◽  
Fraser MacMillan

ABC transporters are primary active transporters found in all kingdoms of life. Human multidrug resistance transporter ABCB1, or P-glycoprotein, has an extremely broad substrate spectrum and confers resistance against chemotherapy drug treatment in cancer cells. The bacterial ABC transporter MsbA is a lipid A flippase and a homolog to the human ABCB1 transporter, with which it partially shares its substrate spectrum. Crystal structures of MsbA and ABCB1 have been solved in multiple conformations, providing a glimpse into the possible conformational changes the transporter could be going through during the transport cycle. Crystal structures are inherently static, while a dynamic picture of the transporter in motion is needed for a complete understanding of transporter function. Molecular dynamics (MD) simulations and electron paramagnetic resonance (EPR) spectroscopy can provide structural information on ABC transporters, but the strength of these two methods lies in the potential to characterise the dynamic regime of these transporters. Information from the two methods is quite complementary. MD simulations provide an all atom dynamic picture of the time evolution of the molecular system, though with a narrow time window. EPR spectroscopy can probe structural, environmental and dynamic properties of the transporter in several time regimes, but only through the attachment sites of an exogenous spin label. In this review the synergistic effects that can be achieved by combining the two methods are highlighted, and a brief methodological background is also presented.


2011 ◽  
Vol 92 (7) ◽  
pp. 1607-1616 ◽  
Author(s):  
Ji-Hye Lee ◽  
Intekhab Alam ◽  
Kang Rok Han ◽  
Sunyoung Cho ◽  
Sungho Shin ◽  
...  

Norovirus is one of the leading agents of gastroenteritis and is a major public health concern. In this study, the crystal structures of recombinant RNA-dependent RNA polymerase (RdRp) from murine norovirus-1 (MNV-1) and its complex with 5-fluorouracil (5FU) were determined at 2.5 Å resolution. Crystals with C2 symmetry revealed a dimer with half a dimer in the asymmetrical unit, and the protein exists predominantly as a monomer in solution, in equilibrium with a smaller population of dimers, trimers and hexamers. MNV-1 RdRp exhibited polymerization activity with a right-hand fold typical of polynucleotide polymerases. The metal ion modelled in close proximity to the active site was found to be coordinated tetrahedrally to the carboxyl groups of aspartate clusters. The orientation of 5FU observed in three molecules in the asymmetrical unit was found to be slightly different, but it was stabilized by a network of favourable interactions with the conserved active-site residues Arg185, Asp245, Asp346, Asp347 and Arg395. The information gained on the structural and functional features of MNV-1 RdRp will be helpful in understanding replication of norovirus and in designing novel therapeutic agents against this important pathogen.


2014 ◽  
Vol 70 (a1) ◽  
pp. C437-C437
Author(s):  
Aruna Bitra ◽  
Ruchi Anand

Guanine deaminases (GDs) are important enzymes involved in both purine metabolism and nucleotide anabolism pathways. Here we present the molecular and catalytic mechanism of NE0047 and use the information obtained to engineer specific enzyme activities. NE0047 from Nitrosomonas europaea was found to be a high fidelity guanine deaminase (catalytic efficiency of 1.2 × 105 M–1 s–1). However; it exhibited secondary activity towards the structurally non-analogous triazine based compound ammeline. The X-ray structure of NE0047 in the presence of the substrate analogue 8-azaguanine help establish that the enzyme exists as a biological dimer and both the proper closure of the C-terminal loop and cross talk via the dimeric interface is crucial for conferring catalytic activity. It was further ascertained that the highly conserved active site residues Glu79 and Glu143 facilitate the deamination reaction by serving as proton shuttles. Moreover, to understand the structural basis of dual substrate specificity, X-ray structures of NE0047 in complex with a series of nucleobase analogs, nucleosides and substrate ammeline were determined. The crystal structures demonstrated that any substitutions in the parent substrates results in the rearrangement of the ligand in a catalytically unfavorable orientation and also impede the closure of catalytically important loop, thereby abrogating activity. However, ammeline was able to adopt a catalytically favorable orientation which, also allowed for proper loop closure. Based on the above knowledge of the crystal structures and the catalytic mechanism, the active site was subsequently engineered to fine-tune NE0047 activity. The mutated versions of the enzyme were designed so that they can function either exclusively as a GD or serve as specific ammeline deaminases. For example, mutations in the active site E143D and N66A confer the enzyme to be an unambiguous GD with no secondary activity towards ammeline. On the other hand, the N66Q mutant of NE0047 only deaminates ammeline. Additionally, a series of crystal structures of the mutant versions were solved that shed light on the structural basis of this differential selectivity.


2012 ◽  
Vol 287 (15) ◽  
pp. 11788-11797 ◽  
Author(s):  
Huanchen Wang ◽  
Stefan Kunz ◽  
Gong Chen ◽  
Thomas Seebeck ◽  
Yiqian Wan ◽  
...  

Trypanosoma cruzi phosphodiesterase C (TcrPDEC) is a potential new drug target for the treatment of Chagas disease but has not been well studied. This study reports the enzymatic properties of various kinetoplastid PDECs and the crystal structures of the unliganded TcrPDEC1 catalytic domain and its complex with an inhibitor. Mutations of PDEC during the course of evolution led to inactivation of PDEC in Trypanosoma brucei/Trypanosoma evansi/Trypanosoma congolense, whereas the enzyme is active in all other kinetoplastids. The TcrPDEC1 catalytic domain hydrolyzes both cAMP and cGMP with a Km of 23.8 μm and a kcat of 31 s−1 for cAMP and a Km of 99.1 μm and a kcat of 17 s−1 for cGMP, thus confirming its dual specificity. The crystal structures show that the N-terminal fragment wraps around the TcrPDEC catalytic domain and may thus regulate its enzymatic activity via direct interactions with the active site residues. A PDE5 selective inhibitor that has an IC50 of 230 nm for TcrPDEC1 binds to TcrPDEC1 in an orientation opposite to that of sildenafil. This observation, together with the screen of the inhibitory potency of human PDE inhibitors against TcrPDEC, implies that the scaffold of some human PDE inhibitors might be used as the starting model for design of parasite PDE inhibitors. The structural study also identified a unique parasite pocket that neighbors the active site and may thus be valuable for the design of parasite-specific inhibitors.


2007 ◽  
Vol 189 (19) ◽  
pp. 7069-7076 ◽  
Author(s):  
Sumarin Soonsanga ◽  
Mayuree Fuangthong ◽  
John D. Helmann

ABSTRACT Bacillus subtilis OhrR is the prototype for the one-Cys family of organic peroxide-sensing regulatory proteins. Mutational analyses indicate that the high sensitivity of the active site cysteine (C15) to peroxidation requires three Tyr residues. Y29 and Y40 from the opposing subunit of the functional dimer hydrogen bond with the reactive Cys thiolate, and substitutions at these positions reduce or eliminate the ability of OhrR to respond to organic peroxides. Y19 is also critical for peroxide sensing, and the Ala substitution mutant (OhrR Y19A) is less susceptible to oxidation at the active site C15 in vivo. The Y19A protein also displays decreased sensitivity to peroxide-mediated oxidation in vitro. Y19 is in van der Waals contact with two residues critical for protein function, F16 and R23. The latter residue makes critical contact with the DNA backbone in the OhrR-operator complex. These results indicate that the high sensitivity of the OhrR C15 residue to oxidation requires interactions with the opposed Tyr residues. Oxidative modification of C15 likely disrupts the C15-Y29′-Y40′ hydrogen bond network and thereby initiates conformational changes that reduce the ability of OhrR to bind to its operator site.


2017 ◽  
Vol 15 (06) ◽  
pp. 1750026 ◽  
Author(s):  
S. Subasri ◽  
Santosh Kumar Chaudhary ◽  
K. Sekar ◽  
Manish Kesherwani ◽  
D. Velmurugan

Fumarase catalyzes the reversible, stereospecific hydration/dehydration of fumarate to L-malate during the Kreb’s cycle. In the crystal structure of the tetrameric fumarase, it was found that some of the active site residues S145, T147, N188 G364 and H235 had water-mediated hydrogen bonding interactions with pyromellitic acid and citrate which help to the protonation state for the conversion of fumarate to malate. When His 235 is mutated with Asn (H235N), water-mediated interactions were lost due to the shifting of active site water molecule by 0.7 Å away. Molecular dynamics (MD) simulations were also carried out by NAMD and analyzed using Assisted Model Building with Energy Refinement (AMBER) program to better understand the conformational stability and other aspects during the binding of pyromellitic acid and citrate with native and mutant FH. The role of hydrogen bonds and hydrophobic interactions was also analyzed. The present study confirms that the H235N mutation has a major effect on the catalytic activity of fumarase which is evident from the biochemical studies.


2002 ◽  
Vol 115 (1) ◽  
pp. 15-23 ◽  
Author(s):  
F. Jon Kull ◽  
Sharyn A. Endow

New crystal structures of the kinesin motors differ from previously described motor-ADP atomic models, showing striking changes both in the switch I region near the nucleotide-binding cleft and in the switch II or ‘relay’ helix at the filament-binding face of the motor. The switch I region, present as a short helix flanked by two loops in previous motor-ADP structures, rearranges into a pseudo-β-hairpin or is completely disordered with melted helices to either side of the disordered switch I loop. The relay helix undergoes a rotational movement coupled to a translation that differs from the piston-like movement of the relay helix observed in myosin. The changes observed in the crystal structures are interpreted to represent structural transitions that occur in the kinesin motors during the ATP hydrolysis cycle. The movements of switch I residues disrupt the water-mediated coordination of the bound Mg2+, which could result in loss of Mg2+ and ADP, raising the intriguing possibility that disruption of the switch I region leads to release of nucleotide by the kinesins. None of the new structures is a true motor-ATP state, however, probably because conformational changes at the active site of the kinesins require interactions with microtubules to stabilize the movements.


Author(s):  
Clauber Henrique Costa ◽  
Alberto dos Santos ◽  
Cláudio Nahum Alves ◽  
Sérgio Martí ◽  
Vicente Moliner ◽  
...  

Recently, a bacterium strain of Ideonella sakaiensis was identified with the uncommon ability to degrade the poly(ethylene terephthalate) (PET). The PETase from I. sakaiensis strain 201-F6 catalyzes the hydrolysis of PET converting it to mono(2-hydroxyethyl) terephthalic acid (MHET), bis(2-hydroxyethyl)-TPA (BHET), and terephthalic acid (TPA). Despite the potential of this enzyme for mitigation or elimination of environmental contaminants, one of the limitations of the use of PETase for PET degradation is the fact that it acts only at moderate temperature due to its low thermal stability. Besides, molecular details of the main interaction of PET in the active site of PETase remains unclear. Herein, molecular docking and molecular dynamics (MD) simulations were applied to analyze structural changes of PETase induced by PET binding. Results from the essential dynamics revealed that β1-β2 connecting loop is very flexible. This Loop is located far from the active site of PETase and we suggest that it can be considered for mutagenesis in order to increase the thermal stability of PETase. The free energy landscape (FEL) demonstrates that the main change in the transition between the unbounded to the bounded state is associated with β7-α5 connecting loop, where the catalytic residue Asp206 is located. Overall, the present study provides insights into the molecular binding mechanism of PET into the PETase structure and a computational strategy for mapping flexible regions of this enzyme, which can be useful for the engineering of more efficient enzymes for recycling the plastic polymers using biological systems.


Sign in / Sign up

Export Citation Format

Share Document