antecedent moisture conditions
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 5)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 156 ◽  
pp. 108165
Author(s):  
Kaizad F. Patel ◽  
Allison Myers-Pigg ◽  
Ben Bond-Lamberty ◽  
Sarah J. Fansler ◽  
Cooper G. Norris ◽  
...  

2020 ◽  
Author(s):  
Alexander Kuhn-Régnier ◽  
Apostolos Voulgarakis ◽  
Peer Nowack ◽  
Matthias Forkel ◽  
I. Colin Prentice ◽  
...  

Abstract. The seasonal and longer-term dynamics of fuel accumulation affect fire seasonality and the occurrence of extreme wildfires. Failure to account for their influence may help to explain why state-of-the-art fire models do not simulate the length and timing of the fire season or interannual variability in burnt area well. We investigated the impact of accounting for different timescales of fuel production and accumulation on burnt area using a suite of random forest regression models that included the immediate impact of climate, vegetation, and human influences in a given month, and tested the impact of various combinations of antecedent conditions in four productivity-related vegetation indices and in antecedent moisture conditions. Analyses were conducted for the period from 2010 to 2015 inclusive. We showed that the inclusion of antecedent vegetation conditions on timescales > 1 yr had no impact on burnt area, but inclusion of antecedent vegetation conditions representing fuel build-up led to an improvement of the global, climatological out-of-sample R2 from 0.567 to 0.686. The inclusion of antecedent moisture conditions also improved the simulation of burnt area through its influence on fuel build-up, which is additional to the influence of current moisture levels on fuel drying. The length of the period which needs to be considered to account for fuel build-up varies across biomes; fuel-limited regions are sensitive to antecedent conditions over longer time periods (~4 months) and moisture-limited regions are more sensitive to current conditions.


Author(s):  
Maurizio Lazzari ◽  
Marco Piccarreta ◽  
Salvatore Manfreda

Abstract. Rainfall-triggered shallow landslides have caused losses of human life and millions of euros in damage to property in all parts of the world. The need to prevent such phenomena combined with the difficulty to describe the geo-physical processes over large scales led to the adoption of empirical rainfall thresholds derived from the observed relationship between rainfall intensity/duration and landslide occurrence. These thresholds are generally obtained neglecting the role of the antecedent moisture conditions that should be taken into consideration. In the present manuscript, we explored the role of antecedent soil moisture on the critical rainfall intensity–duration thresholds highlighting its critical impact. Therefore, traditional approaches that neglect such parameter may have a limited value in the early-warning systems. This study was carried out using a record of 326 landslides occurred in the last 18 years in the Basilicata region (southern Italy). Besides the ordinary data (i.e. rainstorm intensity and duration), we also derived the antecedent moisture conditions using a parsimonious hydrological model.


2017 ◽  
Vol 21 (3) ◽  
pp. 1721-1739 ◽  
Author(s):  
Jana von Freyberg ◽  
Bjørn Studer ◽  
James W. Kirchner

Abstract. High-frequency measurements of solutes and isotopes (18O and 2H) in rainfall and streamflow can shed important light on catchment flow pathways and travel times, but the workload and sample storage artifacts involved in collecting, transporting, and analyzing thousands of bottled samples severely constrain catchment studies in which conventional sampling methods are employed. However, recent developments towards more compact and robust analyzers have now made it possible to measure chemistry and water isotopes in the field at sub-hourly frequencies over extended periods. Here, we present laboratory and field tests of a membrane-vaporization continuous water sampler coupled to a cavity ring-down spectrometer for real-time measurements of δ18O and δ2H combined with a dual-channel ion chromatograph (IC) for the synchronous analysis of major cations and anions. The precision of the isotope analyzer was typically better than 0.03 ‰ for δ18O and 0.17 ‰ for δ2H in 10 min average readings taken at intervals of 30 min. Carryover effects were less than 1.2 % between isotopically contrasting water samples for 30 min sampling intervals, and instrument drift could be corrected through periodic analysis of secondary reference standards. The precision of the ion chromatograph was typically  ∼  0.1–1 ppm or better, with relative standard deviations of  ∼  1 % or better for most major ions in stream water, which is sufficient to detect subtle biogeochemical signals in catchment runoff. We installed the coupled isotope analyzer/IC system in an uninsulated hut next to a stream of a small catchment and analyzed stream water and precipitation samples every 30 min over 28 days. These high-frequency measurements facilitated a detailed comparison of event-water fractions via endmember mixing analysis with both chemical and isotope tracers. For two events with relatively dry antecedent moisture conditions, the event-water fractions were < 21 % based on isotope tracers but were significantly overestimated (40 to 82 %) by the chemical tracers. These observations, coupled with the storm-to-storm patterns in precipitation isotope inputs and the associated stream water isotope response, led to a conceptual hypothesis for runoff generation in the catchment. Under this hypothesis, the pre-event water that is mobilized by precipitation events may, depending on antecedent moisture conditions, be significantly shallower, younger, and less mineralized than the deeper, older water that feeds baseflow and thus defines the pre-event endmember used in hydrograph separation. This proof-of-concept study illustrates the potential advantages of capturing isotopic and hydrochemical behavior at a high frequency over extended periods that span multiple hydrologic events.


Sign in / Sign up

Export Citation Format

Share Document