scholarly journals The role of antecedent soil moisture conditions on rainfall-triggered shallow landslides

Author(s):  
Maurizio Lazzari ◽  
Marco Piccarreta ◽  
Salvatore Manfreda

Abstract. Rainfall-triggered shallow landslides have caused losses of human life and millions of euros in damage to property in all parts of the world. The need to prevent such phenomena combined with the difficulty to describe the geo-physical processes over large scales led to the adoption of empirical rainfall thresholds derived from the observed relationship between rainfall intensity/duration and landslide occurrence. These thresholds are generally obtained neglecting the role of the antecedent moisture conditions that should be taken into consideration. In the present manuscript, we explored the role of antecedent soil moisture on the critical rainfall intensity–duration thresholds highlighting its critical impact. Therefore, traditional approaches that neglect such parameter may have a limited value in the early-warning systems. This study was carried out using a record of 326 landslides occurred in the last 18 years in the Basilicata region (southern Italy). Besides the ordinary data (i.e. rainstorm intensity and duration), we also derived the antecedent moisture conditions using a parsimonious hydrological model.

2010 ◽  
Vol 7 (3) ◽  
pp. 3329-3363 ◽  
Author(s):  
G. A. Ali ◽  
A. G. Roy

Abstract. While a large number of non-linear hillslope and catchment rainfall-runoff responses have been attributed to the temporal variability in antecedent moisture conditions (AMCs), two problems emerge: 1) the difficulty of measuring AMCs, and 2) the absence of explicit guidelines for the choice of surrogates or proxies for AMCs. This paper aims at determining whether or not multiple surrogates for AMCs should be used in order not to bias our understanding of a system hydrological behaviour. We worked in a small forested catchment, the Hermine, where soil moisture has been measured at 121 different locations at four depths on 16 occasions. Without making any assumption on active processes, we used various linear and nonlinear regression models to evaluate the point-scale temporal relations between actual soil moisture contents and selected meteorological-based surrogates for AMCs. We then mapped the nature of the "best fit" model to identify 1) spatial clusters of soil moisture monitoring sites whose hydrological behaviour was similar, and 2) potential topographic influences on these behaviours. Two conclusions stood out. Firstly, it was shown that the sole reference to AMCs indices traditionally used in catchment hydrology, namely antecedent rainfall amounts summed over periods of seven or ten days, would have led to an incomplete understanding of the Hermine catchment dynamics. Secondly, the relationships between point-scale soil moisture content and surrogates for AMCs were not spatially homogeneous, thus revealing a mosaic of linear and nonlinear catchment "active" and "contributing" sources whose location was often controlled by surface terrain attributes or the topography of a soil-confining layer interface. These results represent a step forward in developing a hydrological conceptual model for the Hermine catchment as they indicate depth-specific processes and spatially-variable triggering conditions. Further investigations are, however, necessary in order to derive general guidelines for the choice of the best surrogates for AMCs in a catchment.


Author(s):  
Maurizio Lazzari ◽  
Marco Piccarreta ◽  
Ram L. Ray ◽  
Salvatore Manfreda

Rainfall-triggered shallow landslide events have caused losses of human lives and millions of euros in damage to property in all parts of the world. The need to prevent such hazards combined with the difficulty of describing the geomorphological processes over regional scales led to the adoption of empirical rainfall thresholds derived from records of rainfall events triggering landslides. These rainfall intensity thresholds are generally computed, assuming that all events are not influenced by antecedent soil moisture conditions. Nevertheless, it is expected that antecedent soil moisture conditions may provide critical support for the correct definition of the triggering conditions. Therefore, we explored the role of antecedent soil moisture on critical rainfall intensity-duration thresholds to evaluate the possibility of modifying or improving traditional approaches. The study was carried out using 326 landslide events that occurred in the last 18 years in the Basilicata region (southern Italy). Besides the ordinary data (i.e., rainstorm intensity and duration), we also derived the antecedent soil moisture conditions using a parsimonious hydrological model. These data have been used to derive the rainfall intensity thresholds conditional on the antecedent saturation of soil quantifying the impact of such parameters on rainfall thresholds.


2020 ◽  
Author(s):  
Pasquale Marino ◽  
Roberto Greco ◽  
David James Peres ◽  
Thom A. Bogaard

<p>Prediction of rainfall-induced landslides is often entrusted to the definition of empirical thresholds (usually expressed in terms of rainfall intensity and duration), linking the precipitation to the triggering of landslides. However, rainfall intensity-duration thresholds do not exploit the knowledge of the hydrological processes developing in the slope, so they tend to generate false and missed alarms. Rainfall-induced shallow landslides usually occur in initially unsaturated soil covers following an increase of pore water pressure, due to the increase of soil moisture, caused by large and persistent rainfall. Clearly, it should be possible to use soil moisture for landslide prediction. Recently, Bogaard & Greco (2018) proposed the cause-trigger conceptual framework to develop hydro-meteorological thresholds that combine the antecedent causal factors and the actual trigger connected with landslide initiation. In fact, in some regions where rainfall-induced shallow landslides are particularly dangerous and pose a serious risk to people and infrastructures, the antecedent saturation is the predisposing factor, while the actual landslide triggering is associated with the hydrologic response to the recent and incoming precipitation. In fact, numerous studies already tried to introduce, directly or with models, the effects of antecedent soil moisture content in the empirical thresholds for improving landslide forecasting. Soil moisture can be measured locally, by a range of on-site measurement techniques, or remotely, from satellites or airborne. On-site measurements have proved promising in improving the performance of thresholds for landslide early warning. On-site data are accurate but sparse, so there is an increasing interest on the possible use of remotely sensed data. And in fact, recent research has shown that they can provide useful information for landslide prediction at regional scale, despite their coarse resolution and inherent uncertainty.</p><p>However, while remote sensing techniques provide near-surface (5cm depth) soil moisture estimate, the depth involved in shallow landslide is typically 1-2m below the surface. This depth, overlapping with the root penetration zone, is influenced by antecedent precipitation, soil texture, vegetation and, so, it is very difficult to find a clear relationship with near-surface soil moisture. Many studies have been conducted to provide root-zone soil moisture through physically-based approaches and data driven methods, data assimilation schemes, and satellite information.</p><p>In this study, the question if soil moisture information derived from current or future satellite products can improve landslide hazard prediction, and to what extent, is investigated. Hereto, real-world landslide and hydrology information, from two sites of Southern Italy characterized by frequent shallow landslides (Peloritani mountains, in Sicily, and Partenio mountains, in Campania), is analyzed. To get datasets long enough to carry out statistical analyses, synthetic time series of rainfall and soil cover response have been generated, with the application of a stochastic rainfall model and a physically based infiltration model, for both the sites. Near-surface and root-zone soil moisture have been tested, accounting also for effects of uncertainty and of coarse spatial and temporal resolution of measurements. The obtained results show that, in all cases, soil moisture information allows building hydro-meteorological thresholds for landslide prediction, significantly outperforming the currently adopted purely meteorological thresholds.</p><p> </p><p> </p>


1986 ◽  
Vol 8 (2) ◽  
pp. 97 ◽  
Author(s):  
Rees H van ◽  
RC Boston

A 'portable' rainfall simulator was used on alpine soils on the Bogong High Plains in Victoria, to determine the relationship of surface runoff to soil moisture, rainfall intensity, slope and the percentage of the area lacking vegetation cover (bare ground). A strong inverse relationship (R' = 0.64) existed between total runoff and antecedent soil moisture conditions. The other factors, within the range evaluated in these experiments (bare ground 0 to 33'70, rainfall intensity 37 to 97 mm/hr and slope 6 to 23%) had no significant influence on runoff. Time to runoff initiation was influenced by antecedent soil moisture, slope and rainfall intensity ( ~ ~ ~ 0 . 7 1 ) . It was found that time to runoff decreased as the soils dried, and the slope and rainfall intensity increased. The percentage of bare ground had little influence on the time to runoff initiation. These results show that differences in grassland condition, including large differences in the percentage of bare ground, had little influence on either surface runoff or on the time to runoff initiation. The single most important factor influencing runoff rates was the antecedent moisture content of the soil. This factor is generally outside management control.


2020 ◽  
Author(s):  
Raül Oorthuis ◽  
Marcel Hürlimann ◽  
Clàudia Abancó ◽  
José Moya ◽  
Antonio Lloret ◽  
...  

<p>Torrential flows, like debris flows and debris floods, can mobilize large volumes at high velocities in mountainous regions. Therefore, they represent an important erosional process and a significant hazard towards infrastructures and people (sometimes catastrophic).</p><p>Monitoring-based analysis is a crucial task to improve the understanding of the mechanisms triggering torrential flows and its propagation, which are necessary to implement early warning systems. The monitoring of triggering conditions generally focusses on rainfall measurements and the characterization of the critical rainfall conditions. However, rainfall data do not provide a complete picture of the physical processes involved. Very few studies include soil moisture and/or pore water pressure measurements to define the hydrologic response at the natural slopes of the catchment. In that respect, this study analyses both rainfall and soil moisture data at a Mediterranean-influenced torrential basin located in Central Pyrenees (the Rebaixader site).</p><p>The Rebaixader site has a high torrential activity, with 11 debris flows and 24 debris floods detected since 2009. The temporal distribution of rainfall episodes and torrential flows shows a clear shift between the most frequent rainfall episodes (beginning of June) and torrential flows (mid-July). This suggests that soil moisture conditions, depending on antecedent rainfall and/or snowmelt, affect the triggering of torrential flows. Regarding critical rainfall conditions, a previously published rainfall threshold was updated including total rainfall duration and mean intensity of 2009-2019 rainfalls. On the other hand, measured volumetric water content (VWC) was analysed for triggering and non-triggering rainfall events. Preliminary results show lower VWC increment on wetter soils at the beginning of rainstorms that triggered torrential flows. This indicates that soil saturates with lower rainfall amount if the soil is initially wetter; which subsequently generates higher runoff rate and therefore a higher erosion and transport energy that may trigger torrential flows. In addition, a slight trend was observed when comparing rainfall intensity and soil moisture; generally larger rainfall intensity is necessary to trigger torrential flows when soil is drier.  </p><p>The analysis of VWC data was more complicated in contrast to the one of rainfall data, since the time series are shorter (2013-2019) and the physical interpretation is not straightforward. Therefore, additional data are necessary to confirm and define soil moisture thresholds triggering torrential flows.</p>


2010 ◽  
Vol 14 (10) ◽  
pp. 1843-1861 ◽  
Author(s):  
G. A. Ali ◽  
A. G. Roy

Abstract. While a large number of non-linear hillslope and catchment rainfall-runoff responses have been attributed to the temporal variability in antecedent moisture conditions (AMCs), two problems emerge: (1) the difficulty of measuring AMCs, and (2) the absence of explicit guidelines for the choice of surrogates or proxies for AMCs. This paper aims at determining whether or not multiple surrogates for AMCs should be used in order not to bias our understanding of a system hydrological behaviour. We worked in a small forested catchment, the Hermine, where soil moisture has been measured at 121 different locations at four depths on 16 occasions. Without making any assumption on active processes, we used various linear and nonlinear regression models (i.e. linear, quadratic, cubic, exponential, logarithmic and logistic) to evaluate the point-scale temporal relations between actual soil moisture contents and selected meteorological-based surrogates for AMCs. We then mapped the nature of the "best fit" model to identify (1) spatial clusters of soil moisture monitoring sites whose hydrological behaviour was similar, and (2) potential topographic influences on these behaviours. Two conclusions stood out. Firstly, it was shown that the sole reference to AMCs indices traditionally used in catchment hydrology, namely antecedent rainfall amounts summed over periods of seven or ten days, would have led to an incomplete understanding of the Hermine catchment dynamics. Secondly, the relationships between point-scale soil moisture content and surrogates for AMCs were not spatially homogeneous, thus revealing a mosaic of linear and nonlinear catchment "active" and "contributing" sources whose locations were seldom controlled by surface terrain attributes or the topography of a soil-confining layer interface. These results represent a step forward for the Hermine catchment as they point towards depth-specific processes and spatially-variable triggering conditions that are not controlled by topography. Further investigations are, however, necessary in order to derive general guidelines for the choice of the best surrogates for AMCs in a catchment.


2013 ◽  
Vol 13 (5) ◽  
pp. 1202-1208
Author(s):  
C. W. Baek ◽  
N. Coles

A roaded catchment (RC) is a representative type of artificial catchment for rainwater harvesting. The rainfall–runoff threshold value of the RC is the main factor which influences the system efficiency and cost. Antecedent soil moisture condition is an important factor which impacts on the determination of the rainfall–runoff threshold value. In this study, rainfall–antecedent soil moisture condition–runoff relationships and the potential efficiency of RCs are presented. Rainfall and runoff data monitored at research sites in Merredin and Mount Barker are used to determine this relationship. Two antecedent moisture criteria; Antecedent Moisture Conditions (AMC) and Average Antecedent Precipitation (AAP) are used to analyse the relationship between previous rainfall and soil moisture for each RC. Monitored results show that AMC is not that suitable to show the relationship between rainfall and antecedent soil moisture condition of the RC in the dryland of Western Australia and it is recommended to use AAP to determine this relationship.


2012 ◽  
Vol 2012 (16) ◽  
pp. 1296-1317
Author(s):  
Ben Gamble ◽  
Eric Saylor ◽  
Joseph Koran ◽  
Susan Moisio ◽  
Nancy Schultz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document