photoactivated adenylyl cyclase
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 118 (3) ◽  
pp. e2016584118
Author(s):  
Zhiwen Zhou ◽  
Kazuki Okamoto ◽  
Junya Onodera ◽  
Toshimitsu Hiragi ◽  
Megumi Andoh ◽  
...  

Astrocytes play a key role in brain homeostasis and functions such as memory. Specifically, astrocytes express multiple receptors that transduce signals via the second messenger cAMP. However, the involvement of astrocytic cAMP in animal behavior and the underlying glial–neuronal interactions remains largely unknown. Here, we show that an increase in astrocytic cAMP is sufficient to induce synaptic plasticity and modulate memory. We developed a method to increase astrocytic cAMP levels in vivo using photoactivated adenylyl cyclase and found that increased cAMP in hippocampal astrocytes at different time points facilitated memory formation but interrupted memory retention via NMDA receptor–dependent plasticity. Furthermore, we found that the cAMP-induced modulation of memory was mediated by the astrocyte–neuron lactate shuttle. Thus, our study unveils a role of astrocytic cAMP in brain function by providing a tool to modulate astrocytic cAMP in vivo.


2020 ◽  
Author(s):  
Alexander Nemukhin ◽  
Maria Khrenova ◽  
Anna M. Kulakova

<p>We report the first computational characterization of an optogenetic system composed of two photosensing BLUF (<u>b</u>lue <u>l</u>ight sensor <u>u</u>sing <u>f</u>lavin adenine dinucleotide) domains and two catalytic adenylyl cyclase (AC) domains. Conversion of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP) and pyrophosphate (PPi) catalyzed by ACs coupled with excitation in photosensing domains has emerged in the focus of modern optogenetic applications because of the request in photoregulated enzymes to modulate cellular concentrations of signaling messengers. The photoactivated adenylyl cyclase from the soil bacterium <i>Beggiatoa sp.</i> (bPAC) is an important model showing considerable increase of the ATP to cAMP conversion rate in the catalytic domain after the illumination of the BLUF domain. The 1 μs classical molecular dynamics simulations reveal that the activation of the BLUF domain leading to tautomerization of Gln49 in the chromophore binding pocket results in switching of position of the side chain of Arg278 in the active site of AC. Allosteric signal transmission pathways between Gln49 from BLUF and Arg278 from AC were revealed by the dynamical network analysis. The Gibbs energy profiles of the ATP → cAMP + PPi reaction computed using QM(DFT(ωB97X-D3/6-31G**))/MM(CHARMM) molecular dynamics simulations for both Arg278 conformations in AC clarify the reaction mechanism. In the light-activated system, the corresponding arginine conformation stabilizes the pentacoordinated phosphorus of the α-phosphate group in the transition state, thus lowering the activation energy. Simulations of the bPAC system with the Tyr7Phe replacement in BLUF demonstrate occurrence of both arginine conformations in an equal ratio, explaining the experimentally observed intermediate catalytic activity of the bPAC-Y7F variant as compared with the dark and light states of the wild type bPAC. </p>


2020 ◽  
Author(s):  
Alexander Nemukhin ◽  
Maria Khrenova ◽  
Anna M. Kulakova

<p>We report the first computational characterization of an optogenetic system composed of two photosensing BLUF (<u>b</u>lue <u>l</u>ight sensor <u>u</u>sing <u>f</u>lavin adenine dinucleotide) domains and two catalytic adenylyl cyclase (AC) domains. Conversion of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP) and pyrophosphate (PPi) catalyzed by ACs coupled with excitation in photosensing domains has emerged in the focus of modern optogenetic applications because of the request in photoregulated enzymes to modulate cellular concentrations of signaling messengers. The photoactivated adenylyl cyclase from the soil bacterium <i>Beggiatoa sp.</i> (bPAC) is an important model showing considerable increase of the ATP to cAMP conversion rate in the catalytic domain after the illumination of the BLUF domain. The 1 μs classical molecular dynamics simulations reveal that the activation of the BLUF domain leading to tautomerization of Gln49 in the chromophore binding pocket results in switching of position of the side chain of Arg278 in the active site of AC. Allosteric signal transmission pathways between Gln49 from BLUF and Arg278 from AC were revealed by the dynamical network analysis. The Gibbs energy profiles of the ATP → cAMP + PPi reaction computed using QM(DFT(ωB97X-D3/6-31G**))/MM(CHARMM) molecular dynamics simulations for both Arg278 conformations in AC clarify the reaction mechanism. In the light-activated system, the corresponding arginine conformation stabilizes the pentacoordinated phosphorus of the α-phosphate group in the transition state, thus lowering the activation energy. Simulations of the bPAC system with the Tyr7Phe replacement in BLUF demonstrate occurrence of both arginine conformations in an equal ratio, explaining the experimentally observed intermediate catalytic activity of the bPAC-Y7F variant as compared with the dark and light states of the wild type bPAC. </p>


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Minako Hirano ◽  
Masumi Takebe ◽  
Tomoya Ishido ◽  
Toru Ide ◽  
Shigeru Matsunaga

AbstractPhotoactivated adenylyl cyclase (PAC) is a unique protein that, upon blue light exposure, catalyzes cAMP production. The crystal structures of two PACs, from Oscillatoria acuminata (OaPAC) and Beggiatoa sp. (bPAC), have been solved, and they show a high degree of similarity. However, the photoactivity of OaPAC is much lower than that of bPAC, and the regulatory mechanism of PAC photoactivity, which induces the difference in activity between OaPAC and bPAC, has not yet been clarified. Here, we investigated the role of the C-terminal region in OaPAC, the length of which is the only notable difference from bPAC. We found that the photoactivity of OaPAC was inversely proportional to the C-terminal length. However, the deletion of more than nine amino acids did not further increase the activity, indicating that the nine amino acids at the C-terminal critically affect the photoactivity. Besides, absorption spectral features of light-sensing domains (BLUF domains) of the C-terminal deletion mutants showed similar light-dependent spectral shifts as in WT, indicating that the C-terminal region influences the activity without interacting with the BLUF domain. The study characterizes new PAC mutants with modified photoactivities, which could be useful as optogenetics tools.


2019 ◽  
Author(s):  
Szi-chieh Yu ◽  
Wagner Steuer Costa ◽  
Jana F. Liewald ◽  
Jiajie Shao ◽  
Alexander Gottschalk

ABSTRACTRelease of neuropeptides from dense core vesicles (DCVs) is important for neuromodulation. By optogenetics, behavioral analysis, electrophysiology, and electron microscopy, we show that synapsin SNN-1 is required for cAMP-dependent neuropeptide release in Caenorhabditis elegans cholinergic motor neurons. In synapsin mutants, behaviors induced by the photoactivated adenylyl cyclase bPAC, which we previously showed to depend on acetylcholine and neuropeptides, are altered like in animals with reduced cAMP. While synapsin mutants have slight alterations in synaptic vesicle distribution, DCVs were affected much more: DCVs were ~30% reduced in synaptic terminals, and not released following bPAC stimulation. Imaging axonal DCV trafficking, also in genome-engineered mutants in the serine-9 protein kinase A phosphorylation site, showed that synapsin captures DCVs at synapses, making them available for release. In non-phosphorylatable SNN-1B(S9A) mutants, DCVs traffic less and accumulate, likely by enhanced tethering to the actin cytoskeleton. Our work establishes synapsin as a key mediator of neuropeptide release.


2017 ◽  
Vol 292 (18) ◽  
pp. 7531-7541 ◽  
Author(s):  
Kazuho Yoshida ◽  
Satoshi P. Tsunoda ◽  
Leonid S. Brown ◽  
Hideki Kandori

Photoactivated adenylyl cyclase (PAC) and guanylyl cyclase rhodopsin increase the concentrations of intracellular cyclic nucleotides upon illumination, serving as promising second-generation tools in optogenetics. To broaden the arsenal of such tools, it is desirable to have light-activatable enzymes that can decrease cyclic nucleotide concentrations in cells. Here, we report on an unusual microbial rhodopsin that may be able to meet the demand. It is found in the choanoflagellate Salpingoeca rosetta and contains a C-terminal cyclic nucleotide phosphodiesterase (PDE) domain. We examined the enzymatic activity of the protein (named Rh-PDE) both in HEK293 membranes and whole cells. Although Rh-PDE was constitutively active in the dark, illumination increased its hydrolytic activity 1.4-fold toward cGMP and 1.6-fold toward cAMP, as measured in isolated crude membranes. Purified full-length Rh-PDE displayed maximal light absorption at 492 nm and formed the M intermediate with the deprotonated Schiff base upon illumination. The M state decayed to the parent spectral state in 7 s, producing long-lasting activation of the enzyme domain with increased activity. We discuss a possible mechanism of the Rh-PDE activation by light. Furthermore, Rh-PDE decreased cAMP concentration in HEK293 cells in a light-dependent manner and could do so repeatedly without losing activity. Thus, Rh-PDE may hold promise as a potential optogenetic tool for light control of intracellular cyclic nucleotides (e.g. to study cyclic nucleotide-associated signal transduction cascades).


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhiwen Zhou ◽  
Kenji F. Tanaka ◽  
Shigeru Matsunaga ◽  
Mineo Iseki ◽  
Masakatsu Watanabe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document