lactate shuttle
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 37)

H-INDEX

33
(FIVE YEARS 3)

2022 ◽  
Vol 12 ◽  
Author(s):  
Elidie Beard ◽  
Sylvain Lengacher ◽  
Sara Dias ◽  
Pierre J. Magistretti ◽  
Charles Finsterwald

Astrocytes play key roles in the regulation of brain energy metabolism, which has a major impact on brain functions, including memory, neuroprotection, resistance to oxidative stress and homeostatic tone. Energy demands of the brain are very large, as they continuously account for 20–25% of the whole body’s energy consumption. Energy supply of the brain is tightly linked to neuronal activity, providing the origin of the signals detected by the widely used functional brain imaging techniques such as functional magnetic resonance imaging and positron emission tomography. In particular, neuroenergetic coupling is regulated by astrocytes through glutamate uptake that triggers astrocytic aerobic glycolysis and leads to glucose uptake and lactate release, a mechanism known as the Astrocyte Neuron Lactate Shuttle. Other neurotransmitters such as noradrenaline and Vasoactive Intestinal Peptide mobilize glycogen, the reserve for glucose exclusively localized in astrocytes, also resulting in lactate release. Lactate is then transferred to neurons where it is used, after conversion to pyruvate, as a rapid energy substrate, and also as a signal that modulates neuronal excitability, homeostasis, and the expression of survival and plasticity genes. Importantly, glycolysis in astrocytes and more generally cerebral glucose metabolism progressively deteriorate in aging and age-associated neurodegenerative diseases such as Alzheimer’s disease. This decreased glycolysis actually represents a common feature of several neurological pathologies. Here, we review the critical role of astrocytes in the regulation of brain energy metabolism, and how dysregulation of astrocyte-mediated metabolic pathways is involved in brain hypometabolism. Further, we summarize recent efforts at preclinical and clinical stages to target brain hypometabolism for the development of new therapeutic interventions in age-related neurodegenerative diseases.


2022 ◽  
pp. 151-159
Author(s):  
Keisuke Miyamoto ◽  
Masahiro Ohsawa
Keyword(s):  

Author(s):  
George A. Brooks ◽  
Adam Osmond ◽  
Robert G Leija ◽  
Casey C Curl ◽  
Jose A Arevalo ◽  
...  

The Lactate Shuttle hypothesis is supported by a variety of techniques including mass spectrometry analytics following infusion of carbon labeled isotopic tracers. However, there has been controversy over whether lactate tracers measure lactate (L) or pyruvate (P) turnover. Here we review the analytical errors, use of inappropriate tissue and animal models, failure to consider L and P pool sizes in modeling results, inappropriate tracer and blood sampling sites, and failure to anticipate roles of heart and lung parenchyma on L:P interactions. With support from magnetic resonance spectroscopy (MRS) and immunocytochemistry we conclude that carbon-labeled lactate tracers can be used to quantitate lactate fluxes.


2021 ◽  
Author(s):  
Andreia Silva da Rocha ◽  
Bruna Bellaver ◽  
Débora G. Souza ◽  
Guilherme Schu ◽  
Igor Camargo Fontana ◽  
...  

Abstract Purpose Advances in functional imaging allowed us to visualize brain glucose metabolism in vivo and non-invasively with [18F]fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) imaging. In the past decades, FDG-PET has been instrumental in the understanding of brain function in health and disease. The source of the FDG-PET signal has been attributed to neuronal uptake, with hypometabolism being considered as a direct index of neuronal dysfunction or death. However, other brain cells are also metabolically active, including astrocytes. Based on the astrocyte-neuron lactate shuttle hypothesis, the activation of the glutamate transporter 1 (GLT-1) acts as a trigger for glucose uptake by astrocytes. With this in mind, we investigated glucose utilization changes after pharmacologically downregulating GLT-1 with clozapine (CLO), an antipsychotic drug. Methods Adult male Wistar rats (control, n = 14; CLO, n = 12) received CLO (25/35mg kg−1) for six weeks. CLO effects were evaluated in vivo with FDG-PET and cortical tissue was used to evaluate glutamate uptake, GLT-1 and GLAST levels. CLO treatment effects were also assessed in cortical astrocyte cultures (glucose and glutamate uptake, GLT-1 and GLAST levels) and in cortical neuronal cultures (glucose uptake). Results CLO markedly reduced in vivo brain glucose metabolism in several brain areas, especially in the cortex. Ex vivo analyses demonstrated decreased cortical glutamate transport along with GLT-1 mRNA and protein downregulation. In astrocyte cultures, CLO decreased GLT-1 density as well as glutamate and glucose uptake. By contrast, in cortical neuronal cultures, CLO did not affect glucose uptake. Conclusion This work provides in vivo demonstration that GLT-1 downregulation induces astrocyte-dependent cortical FDG-PET hypometabolism - mimicking the hypometabolic signature seen in people developing dementia - and adds further evidence that astrocytes are key contributors of the FDG-PET signal.


Human Cell ◽  
2021 ◽  
Author(s):  
Xingchen Wang ◽  
He Liu ◽  
Yingqian Ni ◽  
Peibo Shen ◽  
Xiuzhen Han

Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 548
Author(s):  
María Fernanda Veloz Castillo ◽  
Pierre J. Magistretti ◽  
Corrado Calì

More and more evidence shows how brain energy metabolism is the linkage between physiological and morphological synaptic plasticity and memory consolidation. Different types of memory are associated with differential inputs, each with specific inputs that are upstream diverse molecular cascades depending on the receptor activity. No matter how heterogeneous the response is, energy availability represents the lowest common denominator since all these mechanisms are energy consuming and the brain networks adapt their performance accordingly. Astrocytes exert a primary role in this sense by acting as an energy buffer; glycogen granules, a mechanism to store glucose, are redistributed at glance and conveyed to neurons via the Astrocyte–Neuron Lactate Shuttle (ANLS). Here, we review how different types of memory relate to the mechanisms of energy delivery in the brain.


2021 ◽  
Author(s):  
Joris Guyon ◽  
Ignacio Fernandez-Moncada ◽  
Claire Larrieu ◽  
Cyrielle Bouchez ◽  
Tiffanie Chouleur ◽  
...  

Abstract Lactate is a central metabolite in brain physiology, involved in the astrocyte-neuron lactate shuttle, but also contributes to tumor development. Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults, recognized by angiogenic and invasive growth, in addition to its altered metabolism. By adapting their glycolytic or oxidative metabolism, GBM stem-like cells are able to resist chemo- and radiotherapy. We show herein that lactate fuels GBM anaplerosis by replenishing the TCA cycle in absence of glucose. Lactate dehydrogenases (LDH) catalyze the interconversion of pyruvate and lactate. Deletion of either LDHA or LDHB did not alter significantly GBM growth and invasion. However, ablation of both LDH isoforms led to a reduction of tumor growth, and, consequently, to an increase in mouse survival. Comparative transcriptomics and metabolomics revealed metabolic rewiring involving high oxidative phosphorylation (OxPhos) in the double LDHA/B KO group which sensitized tumors to cranial irradiation, massively improving mouse survival. Survival was also increased when control mice were treated with the antiangiogenic treatment, bevacizumab, and the antiepileptic drug, stiripentol which targets LDH activity. Taken together, this highlights the complex metabolic network in which both LDH A and B are integrated and underscores that combined inhibition of LDHA and B is necessary to impact tumor development. Targeting of these enzymes in combination with anti-angiogenic and repurposed drugs may be of therapeutic benefit, especially when associated with radiotherapy.


2021 ◽  
Author(s):  
Adam J. Lundquist ◽  
George N. Llewellyn ◽  
Susan H. Kishi ◽  
Nicolaus A. Jakowec ◽  
Paula M. Cannon ◽  
...  

Monocarboxylate transporters (MCTs) shuttle molecules, including L-lactate, involved in metabolism and cell signaling of the central nervous system. Astrocyte-specific MCT4 is a key component of the astrocyte-neuron lactate shuttle (ANLS) and is important for neuroplasticity and learning of the hippocampus. However, the importance of astrocyte-specific MCT4 in neuroplasticity of the M1 primary motor cortex remains unknown. In this study, we investigated astrocyte-specific MCT4 in motor learning and neuroplasticity of the M1 primary motor cortex using a cell-type specific shRNA knockdown of MCT4. Knockdown of astrocyte-specific MCT4 resulted in impaired motor performance and learning on the accelerating rotarod. In addition, MCT4 knockdown was associated with a reduction of neuronal dendritic spine density and spine width and decreased protein expression of PSD95 and Arc. Using near-infrared-conjugated 2-deoxyglucose uptake as a surrogate marker for neuronal activity, MCT4 knockdown was also associated with decreased neuronal activity in the M1 primary motor cortex and associated motor regions including the dorsal striatum and ventral thalamus. Our study supports a potential role for astrocyte-specific MCT4 and the ANLS in the neuroplasticity of the M1 primary motor cortex. Targeting MCT4 may serve to enhance neuroplasticity and motor repair in several neurological disorders, including Parkinson's disease and stroke.


2021 ◽  
Vol 12 ◽  
Author(s):  
An-Na Chen ◽  
Yan Luo ◽  
Yu-Han Yang ◽  
Jian-Tao Fu ◽  
Xiu-Mei Geng ◽  
...  

Lactate is an end product of glycolysis. As a critical energy source for mitochondrial respiration, lactate also acts as a precursor of gluconeogenesis and a signaling molecule. We briefly summarize emerging concepts regarding lactate metabolism, such as the lactate shuttle, lactate homeostasis, and lactate-microenvironment interaction. Accumulating evidence indicates that lactate-mediated reprogramming of immune cells and enhancement of cellular plasticity contribute to establishing disease-specific immunity status. However, the mechanisms by which changes in lactate states influence the establishment of diverse functional adaptive states are largely uncharacterized. Posttranslational histone modifications create a code that functions as a key sensor of metabolism and are responsible for transducing metabolic changes into stable gene expression patterns. In this review, we describe the recent advances in a novel lactate-induced histone modification, histone lysine lactylation. These observations support the idea that epigenetic reprogramming-linked lactate input is related to disease state outputs, such as cancer progression and drug resistance.


Sign in / Sign up

Export Citation Format

Share Document