uhf radar
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 16)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Gudmund Wannberg

Abstract. This paper gives an inside view of the first 20 years of operation of the Kiruna-Sodankylä-Tromsø (KST) part of EISCAT as experienced and remembered by myself. The paper is subdivided into an Introduction and 13 sections. Sections 1 to 6 describe the organization, staffing and responsibilites of the Sites, with particular emphasis on the transmitter-related work at Tromsø and the commuting of staff and equipment between the Sites. The Headquarters operation is treated in Section 7. The UHF radar system is treated in Section 8. Section 9 is a review of the VHF system, including a summary of transmitter and antenna problems not available elsewhere in easily accessed media. Section 10 treats the computer system and the proprietary control languages EROS, TARLAN and CORLAN. Section 11 describes the signal processing hardware, with special emphasis on the Alker correlator, its idiosyncrasies and the gradual unlocking of its capabilities through UNIPROG, the GEN-system and the G2-system, culminating in the ability to run alternating codes experiments routinely. Section 12 presents the time- and frequency keeping, a non-trivial task in the early 1980s. Finally, Section 13 discusses the UHF spectrum problem and relates how the UHF system had to be constantly upgraded in order to be able to co-exist with the emerging cellphone networks until the final closure of UHF reception at Kiruna and Sodankylä in 2012. The paper ends with some personal reflections.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 274
Author(s):  
Zeyun Li ◽  
Qingfeng Li ◽  
Hanxian Fang ◽  
Hongwei Gong

We present the observations of the artificial ionospheric modification experiment of EISCAT on 18 October 2012 in Tromsø, Norway. When the pump of alternating O mode and X mode is switched on, the UHF radar observation shows some strong enhancements in electron density, ion lines and plasma lines. Based on some existing theories, we find the following: First, during the experiment, the frequency of plasma line (), ion line () and pump () matches = − 3 and = − 5 occasionally demonstrated that the cascade process occurred. Second, through quantitative calculation, we found that the O-mode component mixed in X-mode wave satisfies the thresholds of the parametric decay instability and the oscillation two-stream instability, from which we infer that the HF-induced plasma lines (HFPLs) and HF-enhanced ion lines (HFILs) observed in X-mode pulse could have been caused by the O-mode component mixed in X-mode wave. Third, the UHF radar observation shows some apparent enhancements over a wide altitude range (from approximately the reflection altitude to ~670 km) in electron density during X-mode pulse, which also does not, in fact, correspond to a true increase in electron density, but due to the enhancement in ion line or the enhancement in radar backscatter induced by some unknown mechanism.


2020 ◽  
Vol 38 (6) ◽  
pp. 1191-1202
Author(s):  
Fasil Tesema ◽  
Noora Partamies ◽  
Hilde Nesse Tyssøy ◽  
Derek McKay

Abstract. Pulsating aurora (PsA) is a diffuse type of aurora with different structures switching on and off with a period of a few seconds. It is often associated with energetic electron precipitation (>10 keV) resulting in the interaction between magnetospheric electrons and electromagnetic waves in the magnetosphere. Recent studies categorize pulsating aurora into three different types – amorphous pulsating aurora (APA), patchy pulsating aurora (PPA), and patchy aurora (PA) – based on the spatial extent of pulsations and structural stability. Differences in precipitation energies of electrons associated with these types of pulsating aurora have been suggested. In this study, we further examine these three types of pulsating aurora using electron density measurements from the European Incoherent Scatter (EISCAT) VHF/UHF radar experiments and Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) cosmic noise absorption (CNA) measurements. Based on ground-based all-sky camera images over the Fennoscandian region, we identified a total of 92 PsA events in the years between 2010 and 2020 with simultaneous EISCAT experiments. Among these events, 39, 35, and 18 were APA, PPA, and PA types with a collective duration of 58, 43, and 21 h, respectively. We found that, below 100 km, electron density enhancements during PPAs and PAs are significantly higher than during APA. However, there are no appreciable electron density differences between PPA and APA above 100 km, while PA showed weaker ionization. The altitude of the maximum electron density also showed considerable differences among the three types, centered around 110, 105, and 105 km for APA, PPA, and PA, respectively. The KAIRA CNA values also showed higher values on average during PPA (0.33 dB) compared to PA (0.23 dB) and especially APA (0.17 dB). In general, this suggests that the precipitating electrons responsible for APA have a lower energy range compared to PPA and PA types. Among the three categories, the magnitude of the maximum electron density shows higher values at lower altitudes and in the late magnetic local time (MLT) sector (after 5 MLT) during PPA than during PA or APA. We also found significant ionization down to 70 km during PPA and PA, which corresponds to ∼200 keV of precipitating electrons.


2020 ◽  
Vol 17 (11) ◽  
pp. 1851-1855
Author(s):  
Yonghuai Yang ◽  
Biyang Wen ◽  
Caijun Wang ◽  
Yidong Hou

2020 ◽  
Vol 38 (4) ◽  
pp. 861-879
Author(s):  
Daniel Kastinen ◽  
Torbjørn Tveito ◽  
Juha Vierinen ◽  
Mikael Granvik

Abstract. Radar observations can be used to obtain accurate orbital elements for near-Earth objects (NEOs) as a result of the very accurate range and range rate measureables. These observations allow the prediction of NEO orbits further into the future and also provide more information about the properties of the NEO population. This study evaluates the observability of NEOs with the EISCAT 3D 233 MHz 5 MW high-power, large-aperture radar, which is currently under construction. Three different populations are considered, namely NEOs passing by the Earth with a size distribution extrapolated from fireball statistics, catalogued NEOs detected with ground-based optical telescopes and temporarily captured NEOs, i.e. mini-moons. Two types of observation schemes are evaluated, namely the serendipitous discovery of unknown NEOs passing the radar beam and the post-discovery tracking of NEOs using a priori orbital elements. The results indicate that 60–1200 objects per year, with diameters D>0.01 m, can be discovered. Assuming the current NEO discovery rate, approximately 20 objects per year can be tracked post-discovery near the closest approach to Earth. Only a marginally smaller number of tracking opportunities are also possible for the existing EISCAT ultra-high frequency (UHF) system. The mini-moon study, which used a theoretical population model, orbital propagation, and a model for radar scanning, indicates that approximately seven objects per year can be discovered using 8 %–16 % of the total radar time. If all mini-moons had known orbits, approximately 80–160 objects per year could be tracked using a priori orbital elements. The results of this study indicate that it is feasible to perform routine NEO post-discovery tracking observations using both the existing EISCAT UHF radar and the upcoming EISCAT 3D radar. Most detectable objects are within 1 lunar distance (LD) of the radar. Such observations would complement the capabilities of the more powerful planetary radars that typically observe objects further away from Earth. It is also plausible that EISCAT 3D could be used as a novel type of an instrument for NEO discovery, assuming that a sufficiently large amount of radar time can be used. This could be achieved, for example by time-sharing with ionospheric and space-debris-observing modes.


2020 ◽  
Author(s):  
Fasil Tesema ◽  
Noora Partamies ◽  
Hilde Nesse Tyssøy ◽  
Derek McKay

Abstract. Pulsating aurora (PsA) is a diffuse type of aurora with different structures switching on and off with a period of few seconds. It is often associated with energetic electron precipitation (10 keV) resulted in the interaction between magnetospheric electrons and electromagnetic waves in the magnetosphere. Recent studies categorize pulsating aurora into three different types: amorphous pulsating aurora (APA), patchy pulsating aurora (PPA), and patchy aurora (PA) based on the spatial extent of pulsations and structural stability. Differences in precipitation energies of electrons associated with these types of pulsating aurora have been suggested. In this study, we further examine these three types of pulsating aurora using electron density measurements from the European Incoherent Scatter (EISCAT) VHF/UHF radar experiments and Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) cosmic noise absorption (CNA) measurements. Based on ground-based all-sky camera images over the Fennoscandian region, we identified a total of 92 PsA events in the years between 2010 and 2020 with simultaneous EISCAT experiments. Among these events, 39, 35, and 18 were APA, PPA, and PA types with a collective duration of 58 hrs, 43 hrs, and 21 hrs, respectively. We found that below 100 km, electron density enhancements during PPAs and PAs are significantly higher than during APA. However, there are no appreciable electron density differences between PPA and APA above 100 km, while PA showed weaker ionization. The altitude of the maximum electron density also showed considerable differences among the three types, centered around 110 km, 105 km, and 105 km for APA, PPA, and PA, respectively. The KAIRA CNA values also showed higher values on average during PPA (0.33 dB) compared to PA (0.23 dB) and especially APA (0.17 dB). In general, this suggests that the precipitating electrons responsible for APA have a lower energy range compared to PPA and PA types. Among the three categories, the magnitude of the maximum electron density shows higher values during PPA at lower altitudes and in the late MLT sector (after 5 MLT). We also found significant ionization down to 70 km during PPA and PA, which corresponds to ~ 200 keV energies of precipitating pulsating aurora electrons.


2020 ◽  
Vol 17 (7) ◽  
pp. 1173-1177 ◽  
Author(s):  
Jie-Bang Yan ◽  
Joshua A. Nunn ◽  
Prasad Gogineni ◽  
Charles O'Neill ◽  
Christopher D. Simpson ◽  
...  

2020 ◽  
Author(s):  
Daniel Kastinen ◽  
Torbjørn Tveito ◽  
Juha Vierinen ◽  
Mikael Granvik

Abstract. Radar observations can be used to obtain accurate orbital elements for near-Earth objects (NEOs) as a result of the very accurate range and range-rate measureables. These observations allow predicting NEO orbits further into the future, and also provide more information about the properties of the NEO population. This study evaluates the observability of NEOs with the EISCAT 3D high-power large-aperture radar, which is currently under construction. Three different populations are considered: NEOs passing by the Earth with a size distribution extrapolated from fireball statistics, catalogued NEOs detected with ground-based optical telescopes, and temporarily-captured NEOs, i.e., minimoons. Two types of observation schemes are evaluated: serendipitous discovery of unknown NEOs passing the radar beam, and post-discovery tracking of NEOs using a priori orbital elements. The results indicate that 60–1200 objects per year with diameters D > 0.01 m can be discovered. Assuming the current NEO discovery rate, approximately 20 objects per year can be tracked post-discovery near closest approach. Only a marginally smaller number of tracking opportunities are also possible for the existing EISCAT UHF system. The minimoon study, which used a theoretical population model, orbital propagation, and a model for radar scanning, indicates that approximately 7 objects per year can be discovered using 8–16 % of the total radar time. If all minimoons had known orbits, approximately 80–160 objects per year could be tracked using a priori orbital elements. The results of this study indicate that it is feasible to perform routine NEO post-discovery tracking observations using both the existing EISCAT UHF radar and the upcoming EISCAT 3D radar. Most detectable objects are within 1 LD distance of the radar. Such observations would complement the capabilities of the more powerful planetary radars that typically observe objects further away from Earth. It is also plausible that EISCAT 3D could be used as a novel type of an instrument for NEO discovery, assuming a sufficiently large amount of radar time can be used. This could be achieved, e.g., by time-sharing with ionospheric and space debris observing modes.


Sign in / Sign up

Export Citation Format

Share Document