A 2.3 kW 80% Efficiency Single GaN Transistor Amplifier for 400.8 MHz Particle Accelerators and UHF Radar Systems

Author(s):  
Gabriele Formicone ◽  
James Custer
1998 ◽  
Vol 16 (10) ◽  
pp. 1355-1366 ◽  
Author(s):  
P. N. Collis ◽  
M. T. Rietveld

Abstract. Mesospheric observations were obtained by the EISCAT UHF and VHF radars during the solar proton event of March 1990. We present the first comparison of incoherent-scatter spectral measurements from the middle mesosphere using simultaneous, co-located observations by the two radars. VHF spectra observed with a vertical antenna were found to be significantly narrower than model predictions, in agreement with earlier UHF results. For antenna pointing directions that were significantly away from the vertical, the wider VHF radar beam gave rise to broadening of the observed spectra due to vertical shears in the horizontal wind. In this configuration, UHF spectral measurements were found to be more suitable for aeronomical applications. Both radar systems provide consistent and reliable estimates of the neutral wind. Spectral results using both the multipulse and pulse-to-pulse schemes were intercompared and their suitability for application to combined mesosphere – lower thermosphere studies investigated.Key words. Mesophere · Lower thermosphere · EISCAT UHF radar · EISCAT VHF radar


Radio Science ◽  
1988 ◽  
Vol 23 (1) ◽  
pp. 1-12 ◽  
Author(s):  
J. D. Mathews ◽  
J. K. Breakall ◽  
M. P. Sulzer

Author(s):  
K. F. Russell ◽  
L. L. Horton

Beams of heavy ions from particle accelerators are used to produce radiation damage in metal alloys. The damaged layer extends several microns below the surface of the specimen with the maximum damage and depth dependent upon the energy of the ions, type of ions, and target material. Using 4 MeV heavy ions from a Van de Graaff accelerator causes peak damage approximately 1 μm below the specimen surface. To study this area, it is necessary to remove a thickness of approximately 1 μm of damaged metal from the surface (referred to as “sectioning“) and to electropolish this region to electron transparency from the unirradiated surface (referred to as “backthinning“). We have developed electropolishing techniques to obtain electron transparent regions at any depth below the surface of a standard TEM disk. These techniques may be applied wherever TEM information is needed at a specific subsurface position.


2019 ◽  
Vol 139 (9) ◽  
pp. 568-575
Author(s):  
Yusuke Sakamoto ◽  
Daisuke Ishizuka ◽  
Tetsuya Matsuda ◽  
Kazuhiro Izui ◽  
Shinji Nishiwaki

2020 ◽  
Vol 79 (10) ◽  
pp. 829-845
Author(s):  
V. I. Lutsenko ◽  
I. V. Lutsenko ◽  
A. V. Sobolyak ◽  
I. V. Popov ◽  
N. X. Ahn ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document