stretch activated ion channels
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 6)

H-INDEX

21
(FIVE YEARS 2)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Carl Procko ◽  
Swetha Murthy ◽  
William T Keenan ◽  
Seyed Ali Reza Mousavi ◽  
Tsegaye Dabi ◽  
...  

In response to touch, some carnivorous plants such as the Venus flytrap have evolved spectacular movements to capture animals for nutrient acquisition. However, the molecules that confer this sensitivity remain unknown. We used comparative transcriptomics to show that expression of three genes encoding homologs of the MscS-Like (MSL) and OSCA/TMEM63 family of mechanosensitive ion channels are localized to touch-sensitive trigger hairs of Venus flytrap. We focus here on the candidate with the most enriched expression in trigger hairs, the MSL homolog FLYCATCHER1 (FLYC1). We show that FLYC1 transcripts are localized to mechanosensory cells within the trigger hair, transfecting FLYC1 induces chloride-permeable stretch-activated currents in naïve cells, and transcripts coding for FLYC1 homologs are expressed in touch-sensing cells of Cape sundew, a related carnivorous plant of the Droseraceae family. Our data suggest that the mechanism of prey recognition in carnivorous Droseraceae evolved by co-opting ancestral mechanosensitive ion channels to sense touch.


2020 ◽  
Author(s):  
Carl Procko ◽  
Swetha Murthy ◽  
William T Keenan ◽  
Seyed Ali Reza Mousavi ◽  
Tsegaye Dabi ◽  
...  

In response to touch, some carnivorous plants such as the Venus flytrap have evolved spectacular movements to capture animals for nutrient acquisition. However, the molecules that confer this sensitivity remain unknown. We used comparative transcriptomics to show that expression of three genes encoding homologs of the MscS-Like (MSL) and OSCA/TMEM63 family of mechanosensitive ion channels are localized to touch-sensitive trigger hairs of Venus flytrap. We focus here on the candidate with the most enriched expression in trigger hairs, the MSL homolog FLYCATCHER1 (FLYC1). We show that FLYC1 transcripts are localized to mechanosensory cells within the trigger hair, transfecting FLYC1 induces chloride-permeable stretch-activated currents in naive cells, and transcripts coding for FLYC1 homologs are expressed in touch-sensing cells of Cape sundew, a related carnivorous plant of the Droseraceae family. Our data suggest that the mechanism of prey recognition in carnivorous Droseraceae evolved by co-opting ancestral mechanosensitive ion channels to sense touch.


2019 ◽  
Vol 20 (5) ◽  
pp. 1165 ◽  
Author(s):  
Sergey Tyganov ◽  
Timur Mirzoev ◽  
Boris Shenkman

Mechanisms that convert a mechanical signal into a biochemical response in an atrophied skeletal muscle remain poorly understood. The aims of the study were to evaluate a temporal response of anabolic signaling and protein synthesis (PS) to eccentric contractions (EC) in rat soleus during hindlimb unloading (HU); and to assess a possible role of stretch-activated ion channels (SAC) in the propagation of a mechanical signal to mTORC1 following HU. Following HU, an isolated soleus was subjected to EC. Upon completion of EC, muscles were collected for western blot analyses to determine the content/phosphorylation of the key anabolic markers. We found that a degree of EC-induced p70S6K phosphorylation and the rate of PS in the soleus of 3- and 7-day unloaded rats was significantly less than that in control. A decrease in EC-induced phosphorylation of p70S6K, RPS6 and PS in the 7-day unloaded soleus treated with SAC inhibitor did not differ from that of the 7-day unloaded soleus without SAC blockade. The results of the study suggest that (i) HU results in a blunted anabolic response to a bout of EC, (ii) attenuation of mTORC1-signaling and PS in response to EC in unloaded soleus may be associated with inactivation of SAC.


2019 ◽  
Vol 316 (1) ◽  
pp. E86-E95 ◽  
Author(s):  
Timur M. Mirzoev ◽  
Sergey A. Tyganov ◽  
Irina O. Petrova ◽  
Boris S. Shenkman

The aim of the study was to 1) measure time-course alternations in the rate of protein synthesis (PS) and phosphorylation status of the key anabolic markers, and 2) find out the role of stretch-activated ion channels (SACs) in the activation of anabolic signaling in the rat soleus during an acute reloading following disuse atrophy. Wistar rats were subjected to 14-day hindlimb suspension (HS) followed by 6, 12, and 24 h of reloading. To examine the role of SAC in the reloading-induced activation of anabolic signaling, the rats were treated with gadolinium (Gd3+), a SAC blocker. The content of signaling proteins was determined by Western blot. c-Myc mRNA expression was assessed by RT-PCR. After 24-h reloading, the PS rate was elevated by 44% versus control. After 6-h reloading, the p-70-kDa ribosomal protein S6 kinase (p70S6k) and translation initiation factor 4E-binding protein 1 (4E-BP1) did not differ from control; however, 12-h reloading resulted in an upregulation of both p70s6k and 4E-BP1 phosphorylation versus control. The phosphorylation of AKT (Ser473) and glycogen synthase kinase-3β (Ser9) was reduced after HS and then completely restored by 12-h reloading. c-Myc was significantly upregulated during the entire reloading. Gd3+ treatment during reloading (12 h) prevented a full phosphorylation of p70S6k, rpS6, 4E-BP1, as well as PS activation. The results of the study suggest that 1) enhanced PS during the acute recovery from HS may be associated with the activation of ribosome biogenesis as well as mammalian target of rapamycin complex 1 (mTORC1)-dependent signaling pathways, and 2) functional SACs are necessary for complete activation of mTORC1 signaling in rat soleus during acute recovery from HS.


2016 ◽  
Vol 311 (3) ◽  
pp. L639-L652 ◽  
Author(s):  
Andreas Schwingshackl

Mechanical ventilation (MV) and oxygen therapy (hyperoxia; HO) comprise the cornerstones of life-saving interventions for patients with acute respiratory distress syndrome (ARDS). Unfortunately, the side effects of MV and HO include exacerbation of lung injury by barotrauma, volutrauma, and propagation of lung inflammation. Despite significant improvements in ventilator technologies and a heightened awareness of oxygen toxicity, besides low tidal volume ventilation few if any medical interventions have improved ARDS outcomes over the past two decades. We are lacking a comprehensive understanding of mechanotransduction processes in the healthy lung and know little about the interactions between simultaneously activated stretch-, HO-, and cytokine-induced signaling cascades in ARDS. Nevertheless, as we are unraveling these mechanisms we are gathering increasing evidence for the importance of stretch-activated ion channels (SACs) in the activation of lung-resident and inflammatory cells. In addition to the discovery of new SAC families in the lung, e.g., two-pore domain potassium channels, we are increasingly assigning mechanosensing properties to already known Na+, Ca2+, K+, and Cl− channels. Better insights into the mechanotransduction mechanisms of SACs will improve our understanding of the pathways leading to ventilator-induced lung injury and lead to much needed novel therapeutic approaches against ARDS by specifically targeting SACs. This review 1) summarizes the reasons why the time has come to seriously consider SACs as new therapeutic targets against ARDS, 2) critically analyzes the physiological and experimental factors that currently limit our knowledge about SACs, and 3) outlines the most important questions future research studies need to address.


2014 ◽  
Vol 2014 (2) ◽  
pp. 19 ◽  
Author(s):  
Alistair Reed ◽  
Peter Kohl ◽  
Rémi Peyronnet

Sign in / Sign up

Export Citation Format

Share Document