block segmentation
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 11)

H-INDEX

7
(FIVE YEARS 0)

Solid Earth ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 2277-2301
Author(s):  
Andreas Eberts ◽  
Hamed Fazlikhani ◽  
Wolfgang Bauer ◽  
Harald Stollhofen ◽  
Helga de Wall ◽  
...  

Abstract. The exposed Variscan basement in central Europe is well-known for its complex structural and lithological architecture resulting from multiple deformation phases. We studied the southwestern margin of the Bohemian Massif, which is characterized by major and long-lived shear zones, such as the Pfahl and Danube shear zones, extending over > 100 km and initiated during Variscan tectonics. We integrated Bouguer gravity anomaly and lidar topographic data analyses and combined our results with available data and observations from low-temperature thermochronology, metamorphic grades, and the exposed granite inventory to detect patterns of basement block segmentation and differential exhumation. Three NW–SE-striking basement blocks are bordered by the Runding, Pfahl, and Danube shear zones from the northeast to the southwest. Basement block boundaries are indicated by abrupt changes in measured gravity patterns and metamorphic grades. By applying high-pass filters to gravity data in combination with lineament analysis, we identified a new NNW–SSE-striking tectonic structure (Cham Fault), which further segments known basement blocks. Basement blocks that are segmented by the Cham Fault differ in the abundance and spatial distribution of exposed late Variscan granites and are further characterized by variations in apparent thermochronological age data. Based on our observations and analyses, a differential exhumation and tectonic tilt model is proposed to explain the juxtaposition of different crustal levels. Block segmentation along the NW–SE-striking Pfahl and Runding shear zones most likely occurred prior, during, and after late orogenic granite emplacement at ca. 320 ± 10 Ma, as some of the granites are cross-cut by the shear zones, while others utilized these structures during magma ascent and emplacement. In contrast, activity and block segmentation along the Cham Fault occurred after granite emplacement as the fault sharply truncates the granite inventory. Our study provides evidence of intense and continuous fault activities during late and post-orogenic times and highlights the importance of tectonic structures in the exhumation and juxtaposition of different crustal levels and the creation of complex lithological patterns in orogenic terrains.


2021 ◽  
Author(s):  
Andreas Eberts ◽  
Hamed Fazlikhani ◽  
Wolfgang Bauer ◽  
Harald Stollhofen ◽  
Helga de Wall ◽  
...  

Abstract. The exposed Variscan basement in Central Europe is well-known for its complex structural and lithological architecture resulting from multiple deformation phases. We study the southwestern margin of the Bohemian Massif, which is characterized by major and long-lived shear zones, such as the Pfahl and Danube shear zones, extending over > 100 km and initiated during Variscan tectonics. We integrate Bouguer gravity anomaly and LiDAR topographic data analyses and combine our results with available data and observations from low-temperature thermochronology, metamorphic grades, and granite intrusion depths to detect patterns of basement block segmentation and differential uplift. Three NW-SE striking basement blocks are bordered by the Runding, Pfahl, and Danube shear zones from the northeast to the southwest. Basement block boundaries are indicated by abrupt changes in measured gravity patterns and metamorphic grades. By applying high-pass filters to gravity data in combination with lineament analysis, we identified a new NNW-SSE striking tectonic structure (Cham Fault), which further segments known basement blocks. Basement blocks that are segmented by the Cham Fault differ in the abundance and spatial distribution of exposed late Variscan granites and are further characterized by variations of apparent thermochronological age data. Based on our observations and analyses, a differential uplift and tectonic tilt model is proposed to explain the juxtaposition of different crustal levels exposed at the surface. Block segmentation along the NW-SE striking Pfahl and Runding shear zones most likely occurred prior, during, and after late-orogenic granite emplacement at ca. 320 ± 10 Ma, as some of the granites are cross-cut by the shear zones while others utilized these structures during magma ascent and emplacement. In contrast, activity and block segmentation along the Cham Fault occurred after granite emplacement as the fault sharply truncates the granite inventory. Our study provides evidence for intense and continuous fault activity during late and early post-orogenic times and highlights the importance of tectonic structures in the juxtaposition of different crustal levels and the creation of complex lithological patterns in orogenic terrains.


Author(s):  
Jinhui Guo ◽  
Yunyun Yuan ◽  
Chao Liang ◽  
Yv Zhou ◽  
Dunnan Liu ◽  
...  

2020 ◽  
Vol 10 (15) ◽  
pp. 5364
Author(s):  
Nisim Hurst-Tarrab ◽  
Leonardo Chang ◽  
Miguel Gonzalez-Mendoza ◽  
Neil Hernandez-Gress

Parking block regions host dangerous behaviors that can be detected from a surveillance camera perspective. However, these regions are often occluded, subject to ground bumpiness or steep slopes, and thus they are hard to segment. Firstly, the paper proposes a pyramidal solution that takes advantage of satellite views of the same scene, based on a deep Convolutional Neural Network (CNN). Training a CNN from the surveillance camera perspective is rather impossible due to the combinatory explosion generated by multiple point-of-views. However, CNNs showed great promise on previous works over satellite images. Secondly, even though there are many datasets for occupancy detection in parking lots, none of them were designed to tackle the parking block segmentation problem directly. Given the lack of a suitable dataset, we also propose APKLOT, a dataset of roughly 7000 polygons for segmenting parking blocks from the satellite perspective and from the camera perspective. Moreover, our method achieves more than 50% intersection over union (IoU) in all the testing sets, that is, at both the satellite view and the camera view.


Sign in / Sign up

Export Citation Format

Share Document