variscan basement
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 13)

H-INDEX

16
(FIVE YEARS 1)

Geologija ◽  
2021 ◽  
Vol 64 (2) ◽  
pp. 143-158
Author(s):  
Darko SPAHIĆ ◽  
Tivadar GAUDENYI

The study provides a deeper understanding of the early Mesozoic paleogeogeographic spatial-temporal relationship by studying the two Adria-Europe intervening basement blocks. The Drina-Ivanjica and Pelagonian crustal fragments play important role in the internal early Alpine oceanic constitution further controlling the late Jurassic emplacement of Tethyan Dinaric-Hellenic ophiolites. The proposed paleogeographic reassessment is driven by the new paleocontinental inheritance data associated with the Variscan – pre-Variscan basement terranes. The recently published data suggest an Avalonian-type inheritance of the Pelagonian basement block which indicates a different pre-Variscan plate-tectonic journey, including separate spatial arrangement during Variscan amalgamation. In turn, Cadomian-type basement inheritance has been documented within the sliced Adria microplate. Thus, the Avalonian inheritance place the Pelagonian block away from the Apulia/Adria (Dinarides). In the investigated context of Paleozoic-Mesozoic paleogeographic transition, the Pelagonian block may represent a segment of the Cimmerian ribbon continent or southernmost segment of the Variscan Europe. With regards the nearby Adria microplate, a Triassic-Jurassic oceanic opening led to the decoupling (spreading away from the main Adria microplate) of the Drina-Ivanjica block. The rifting is in line with the simultaneous yet opposite or westward-directed drift of the Pelagonides. The breakup of south European Variscan configuration eventually result in the spatial alignment of the two basement fragments referred to as the “Drina–Pelagonide continental splinter”. By linking the paleogeographic pre-Jurassic–Jurassic relationship between these continental units, the two landlocked Neotethyan Vardar s.l. basins are extrapolated, “Dinaric Tethys” / Inner Dinaric-(Mirdita-Pindos) and the main Vardar Ocean (Western Vardar Zone).


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1124
Author(s):  
Marco Filippi ◽  
Maria Iole Spalla ◽  
Nicola Pigazzini ◽  
Valeria Diella ◽  
Jean-Marc Lardeaux ◽  
...  

Multiscale structural analysis was carried out to explore the sequence of superposed pre-Alpine chloritoid–staurolite–andalusite metamorphic assemblages in the polydeformed Variscan basement of the upper Val Camonica, in the central Southalpine domain. The dominant fabric in the upper Val Camonica basement is the late-Variscan S2 foliation, marked by greenschist facies minerals and truncated by the base of Permian siliciclastic sequences. The intersection with the sedimentary strata defines a Permianage limit on the pre-Alpine tectonometamorphic evolution and exhumation of the Variscan basement. The detailed structural survey revealed that the older S1 foliation was locally preserved in low-strained domains. S1 is a composite fabric resulting from combining S1a and S1b: in the metapelites, S1a was supported by chloritoid, garnet, and biotite and developed before S1b, which was marked by staurolite, garnet, and biotite. S1a and S1b developed at intermediate pressure amphibolite facies conditions during the Variscan convergence, S1a at T = 520–550 °C and P ≃ 0.8 GPa, S1b at T = 550–650 °C and P = 0.4–0.7 GPa. The special feature of the upper Val Camonica metapelites is andalusite, which formed between the late D1b and early D2 tectonic events. Andalusite developed at T = 520–580 °C and P = 0.2–0.4 GPa in pre-Permian times, after the peak of the Variscan collision and before the exhumation of the Variscan basement and the subsequent deposition of the Permian covers. It follows that the upper Val Camonica andalusite has a different age and tectonic significance as compared to that of other pre-Alpine andalusite occurrences in the Alps, where andalusite mostly developed during exhumation of high-temperature basement rocks in Permian–Triassic times.


Solid Earth ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 2277-2301
Author(s):  
Andreas Eberts ◽  
Hamed Fazlikhani ◽  
Wolfgang Bauer ◽  
Harald Stollhofen ◽  
Helga de Wall ◽  
...  

Abstract. The exposed Variscan basement in central Europe is well-known for its complex structural and lithological architecture resulting from multiple deformation phases. We studied the southwestern margin of the Bohemian Massif, which is characterized by major and long-lived shear zones, such as the Pfahl and Danube shear zones, extending over > 100 km and initiated during Variscan tectonics. We integrated Bouguer gravity anomaly and lidar topographic data analyses and combined our results with available data and observations from low-temperature thermochronology, metamorphic grades, and the exposed granite inventory to detect patterns of basement block segmentation and differential exhumation. Three NW–SE-striking basement blocks are bordered by the Runding, Pfahl, and Danube shear zones from the northeast to the southwest. Basement block boundaries are indicated by abrupt changes in measured gravity patterns and metamorphic grades. By applying high-pass filters to gravity data in combination with lineament analysis, we identified a new NNW–SSE-striking tectonic structure (Cham Fault), which further segments known basement blocks. Basement blocks that are segmented by the Cham Fault differ in the abundance and spatial distribution of exposed late Variscan granites and are further characterized by variations in apparent thermochronological age data. Based on our observations and analyses, a differential exhumation and tectonic tilt model is proposed to explain the juxtaposition of different crustal levels. Block segmentation along the NW–SE-striking Pfahl and Runding shear zones most likely occurred prior, during, and after late orogenic granite emplacement at ca. 320 ± 10 Ma, as some of the granites are cross-cut by the shear zones, while others utilized these structures during magma ascent and emplacement. In contrast, activity and block segmentation along the Cham Fault occurred after granite emplacement as the fault sharply truncates the granite inventory. Our study provides evidence of intense and continuous fault activities during late and post-orogenic times and highlights the importance of tectonic structures in the exhumation and juxtaposition of different crustal levels and the creation of complex lithological patterns in orogenic terrains.


2021 ◽  
Author(s):  
Loïc Bouat ◽  
Pierre Strzerzynski ◽  
Régis Mourgues ◽  
Yannick Branquet

<p>Basement/cover interfaces are important transfer zones for hydrothermal fluids responsible for ore deposition, such as U and Pb-Zn deposits. Unconformities are peculiarly mixing zone where basement-derived fluids encounter sedimentary- and/or meteoric-derived fluids; leading to precipitation of these ores. Fluids are channelized by permeability contrast, i.e. impermeable barriers, until being trapped in porous units, i.e. intrinsic porosity and/or secondary porosity (dissolution and karstification process). In this configuration fracturing channelize the fluid flow by breaking impermeable barriers allowing external fluids to enter and react with the rocks (precipitation and/or dissolution). In this way, structural studies are crucial to highlight the fracture network and the potential of geological units to be good reservoirs.</p><p>In France, many occurrences of sediment-hosted deposits are known in Mesozoic basins (i.e. Aquitaine and Paris Basin) especially above the Variscan basement (Morvan district, SW Massif Central district, Poitou High district). The Vendée coast deposit (South Armorican Massif, France) is known for two Pb-Zn(-Ag) occurrences located in Liassic sediments overlying the Variscan basement. Previous works show that, during the Upper Jurassic extensional event (NNE-SSW horizontal stretching), the ore deposition results from the mixing of two different fluids: (1) low temperature brines following a horizontal path from evaporite to basin borders within Liassic sediments along the unconformity, (2) a high temperature and low salinity fluid rising up through the basement from several kilometres depth by a probable vertical pathway.</p><p>However, the permeability architecture leading to such mixing remains poorly constrained. The Vendée ore deposits present favourable outcrop conditions to study the structural control of the fluid plumbing system along the basement/cover unconformity. Structural studies assisted by drone imagery coupled with the characterization of the alteration-mineralization pattern show that:</p><p>(1) Horizontal path for basin brines is controlled by the impermeable barrier of the Toarcien layer overlying Liassic hosting karsts.</p><p>(2) Vertical path of basement-derived fluids is enhanced by new faults and inherited fractures, respectively generated and reopened by the Jurassic extension.</p><p>(3) Relative abundance of faults and veins in the Liassic sedimentary cover and the basement is consistent with a mechanical decoupling in a context of fluid overpressure.</p>


2021 ◽  
Author(s):  
Enrico Capezzuoli ◽  
Amalia Spina ◽  
Andrea Brogi ◽  
Domenico Liotta ◽  
Gabriella Bagnoli ◽  
...  

<p>The Pre-Mesozoic units exposed in the inner Northern Apennines mostly consist of middle-late Carboniferous-Permian successions unconformably deposited on a continental crust consolidated at the end of the Variscan (i.e. Hercynian) orogenic cycle (Silurian-Carboniferous). In the inner Northern Apennines, exposures of this continental crust, Cambrian?-early Carboniferous in age, have been described in the Northern Tuscany, Elba Island (Tuscan Archipelago) and, partly, in scattered and isolated outcrops of southern Tuscany. In this contribution, we reappraise the most significative succession (i.e. Risanguigno Formation) exposed in southern Tuscany and considered by most authors as part of the Variscan Basement. New stratigraphic and structural studies, coupled with palynological analyses, allow us to refine the age of the Risanguigno Fm and its geological setting and evolution. Based on the microfloristic content, the structural setting and the fieldwork study, we attribute this formation to late Tournaisian-Visean (middle Mississipian) time interval and conclude it is not showing evidence of a pre-Alpine deformation. These results, together with the already existing data, allow us to presume that no exposures of rocks involved in the Variscan orogenesis occur in southern Tuscany.</p>


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 84
Author(s):  
Enrico Capezzuoli ◽  
Amalia Spina ◽  
Andrea Brogi ◽  
Domenico Liotta ◽  
Gabriella Bagnoli ◽  
...  

The Pre-Mesozoic units exposed in the inner Northern Apennines mostly consist of Pennsylvanian-Permian successions unconformably deposited on a continental crust consolidated at the end of the Variscan orogenic cycle (Silurian-Carboniferous). In the inner Northern Apennines, exposures of this continental crust, Cambrian?-Devonian in age, have been described in Northern Tuscany, Elba Island (Tuscan Archipelago) and, partly, in scattered and isolated outcrops of southern Tuscany. This paper reappraises the most significant succession (i.e., Risanguigno Formation) exposed in southern Tuscany and considered by most authors as part of the Variscan Basement. New stratigraphic and structural studies, coupled with analyses of the organic matter content, allow us to refine the age of the Risanguigno Fm and its geological setting and evolution. Based on the low diversification of palynoflora, the content of sporomorphs, the structural setting and the new field study, this formation is dated as late Tournaisian to Visean (Middle Mississippian) and is not affected by pre-Alpine deformation. This conclusion, together with the already existing data, clearly indicate that no exposures of rocks involved in the Variscan orogenesis occur in southern Tuscany.


2020 ◽  
Author(s):  
Bernhard Grasemann ◽  
David A. Schneider ◽  
Konstantinos Soukis ◽  
Vincent Roche

<p><span lang="EN-US">Tearing in the Hellenic slab below the transition between the Aegean and Anatolian plate is considered to have significantly affected Miocene tectonic and magmatic evolution of the eastern Mediterranean by causing a toroidal flow of asthenosphere and a lateral gradient of extension in the upper plate. Some studies suggest that this lateral gradient is accommodated by a distributed sinistral lithospheric-scale shear zone whereas other studies favor a localized NE-SW striking transfer zone. Recent studies in the northern Dodecanese demonstrate that the transition zone between the Aegean and Anatolian plate is characterized by Miocene extension with a constant NNE-SSW sense of shear accommodating the difference in finite extension rates in the middle-lower crust. Neither localized or distributed strike-slip faults nor rotation of blocks about a vertical axis have been observed.</span></p> <p><span lang="EN-US">In this work we focus on the geology Kalymnos located in the central Dodecanese. Based on our new geological map, three major tectonic units can be distinguished: (i) Low-grade, fossil-rich late Paleozoic marbles, which have been deformed into S-vergent folds and out-of-sequence thrusts. This fold-and-thrust belt is sealed by an up to 200 m thick wildflysch-type deposit consisting of low-grade metamorphic radiolarites and conglomerates with tens of meters-scale marbles and ultramafics blocks. (ii) Above this unit, amphibolite facies schists, quartzites and amphibolites are tectonically juxtaposed along a several meter-thick thrust fault with low-grade ultramylonites and cohesive ultracataclasites/pseudotachylites with top-to-N kinematics. (iii) At highest structural levels, a major cataclastic low-angle normal fault zone localized in Verrucano-type violet slates separates Mesozoic unmetamorphosed limestones in the hanging wall. The sense of shear of the normal fault is top-to-SSW. All units are cut by brittle high-angle normal faults shaping the geomorphology of Kalymnos, which is characterized by three major NNW-SSE trending graben systems.</span></p> <p><span lang="EN-US">New white mica Ar-Ar ages suggests that the middle units represent relics of a Variscan basement, which was thrusted on top of a fold-and-thrust belt during an Eo-Cimmerian event. Zircon (U-Th)/He ages from the Variscan basement are c. 28 Ma, indicating that the lower units were exhumed below the Mesozoic carbonates during the Oligocene-Miocene. Since Miocene extension in the northern Dodecanese records top-to-NNE kinematics, we suggest that back-arc extension in the whole Aegean realm and transition to the Anatolian plate is bivergent, and tearing in the Hellenic slab did not significantly affected the extension pattern in the upper crust.</span></p>


Sign in / Sign up

Export Citation Format

Share Document