electron binding
Recently Published Documents


TOTAL DOCUMENTS

417
(FIVE YEARS 28)

H-INDEX

58
(FIVE YEARS 4)

Vacuum ◽  
2021 ◽  
pp. 110849
Author(s):  
V.M. Mikoushkin ◽  
E.A. Makarevskaya ◽  
D.A. Novikov ◽  
D.E. Marchenko

2021 ◽  
Vol 130 (20) ◽  
pp. 205706
Author(s):  
M. Katsikini ◽  
K. Filintoglou ◽  
F. Pinakidou ◽  
N. Pliatsikas ◽  
J. Arvanitidis ◽  
...  

2021 ◽  
Vol 12 (38) ◽  
pp. 9353-9359
Author(s):  
J. Matthias Kahk ◽  
Georg S. Michelitsch ◽  
Reinhard J. Maurer ◽  
Karsten Reuter ◽  
Johannes Lischner

2021 ◽  
Vol 140 (9) ◽  
Author(s):  
J. A. Flores-Ramos ◽  
J. Valdez-Ruvalcaba ◽  
H. O. González-Ochoa ◽  
R. Flores-Moreno

2021 ◽  
Vol 22 (8) ◽  
pp. 4276
Author(s):  
Michael Filatov ◽  
Seunghoon Lee ◽  
Hiroya Nakata ◽  
Cheol-Ho Choi

The non-adiabatic dynamics of furan excited in the ππ* state (S2 in the Franck–Condon geometry) was studied using non-adiabatic molecular dynamics simulations in connection with an ensemble density functional method. The time-resolved photoelectron spectra were theoretically simulated in a wide range of electron binding energies that covered the valence as well as the core electrons. The dynamics of the decay (rise) of the photoelectron signal were compared with the excited-state population dynamics. It was observed that the photoelectron signal decay parameters at certain electron binding energies displayed a good correlation with the events occurring during the excited-state dynamics. Thus, the time profile of the photoelectron intensity of the K-shell electrons of oxygen (decay constant of 34 ± 3 fs) showed a reasonable correlation with the time of passage through conical intersections with the ground state (47 ± 2 fs). The ground-state recovery constant of the photoelectron signal (121 ± 30 fs) was in good agreement with the theoretically obtained excited-state lifetime (93 ± 9 fs), as well as with the experimentally estimated recovery time constant (ca. 110 fs). Hence, it is proposed to complement the traditional TRPES observations with the trXPS (or trNEXAFS) measurements to obtain more reliable estimates of the most mechanistically important events during the excited-state dynamics.


Sign in / Sign up

Export Citation Format

Share Document