stabilizer states
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 15)

H-INDEX

10
(FIVE YEARS 2)

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 606
Author(s):  
Hammam Qassim ◽  
Hakop Pashayan ◽  
David Gosset

In this work we improve the runtime of recent classical algorithms for strong simulation of quantum circuits composed of Clifford and T gates. The improvement is obtained by establishing a new upper bound on the stabilizer rank of m copies of the magic state |T⟩=2−1(|0⟩+eiπ/4|1⟩) in the limit of large m. In particular, we show that |T⟩⊗m can be exactly expressed as a superposition of at most O(2αm) stabilizer states, where α≤0.3963, improving on the best previously known bound α≤0.463. This furnishes, via known techniques, a classical algorithm which approximates output probabilities of an n-qubit Clifford + T circuit U with m uses of the T gate to within a given inverse polynomial relative error using a runtime poly(n,m)2αm. We also provide improved upper bounds on the stabilizer rank of symmetric product states |ψ⟩⊗m more generally; as a consequence we obtain a strong simulation algorithm for circuits consisting of Clifford gates and m instances of any (fixed) single-qubit Z-rotation gate with runtime poly(n,m)2m/2. We suggest a method to further improve the upper bounds by constructing linear codes with certain properties.


Author(s):  
David Gross ◽  
Sepehr Nezami ◽  
Michael Walter

AbstractSchur–Weyl duality is a ubiquitous tool in quantum information. At its heart is the statement that the space of operators that commute with the t-fold tensor powers $$U^{\otimes t}$$ U ⊗ t of all unitaries $$U\in U(d)$$ U ∈ U ( d ) is spanned by the permutations of the t tensor factors. In this work, we describe a similar duality theory for tensor powers of Clifford unitaries. The Clifford group is a central object in many subfields of quantum information, most prominently in the theory of fault-tolerance. The duality theory has a simple and clean description in terms of finite geometries. We demonstrate its effectiveness in several applications: We resolve an open problem in quantum property testing by showing that “stabilizerness” is efficiently testable: There is a protocol that, given access to six copies of an unknown state, can determine whether it is a stabilizer state, or whether it is far away from the set of stabilizer states. We give a related membership test for the Clifford group. We find that tensor powers of stabilizer states have an increased symmetry group. Conversely, we provide corresponding de Finetti theorems, showing that the reductions of arbitrary states with this symmetry are well-approximated by mixtures of stabilizer tensor powers (in some cases, exponentially well). We show that the distance of a pure state to the set of stabilizers can be lower-bounded in terms of the sum-negativity of its Wigner function. This gives a new quantitative meaning to the sum-negativity (and the related mana) – a measure relevant to fault-tolerant quantum computation. The result constitutes a robust generalization of the discrete Hudson theorem. We show that complex projective designs of arbitrary order can be obtained from a finite number (independent of the number of qudits) of Clifford orbits. To prove this result, we give explicit formulas for arbitrary moments of random stabilizer states.


2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Yihong Zhang ◽  
Yifan Tang ◽  
You Zhou ◽  
Xiongfeng Ma

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Jackson R. Fliss

Abstract We study the extent to which knot and link states (that is, states in 3d Chern-Simons theory prepared by path integration on knot and link complements) can or cannot be described by stabilizer states. States which are not classical mixtures of stabilizer states are known as “magic states” and play a key role in quantum resource theory. By implementing a particular magic monotone known as the “mana” we quantify the magic of knot and link states. In particular, for SU(2)k Chern-Simons theory we show that knot and link states are generically magical. For link states, we further investigate the mana associated to correlations between separate boundaries which characterizes the state’s long-range magic. Our numerical results suggest that the magic of a majority of link states is entirely long-range. We make these statements sharper for torus links.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 400
Author(s):  
Arne Heimendahl ◽  
Felipe Montealegre-Mora ◽  
Frank Vallentin ◽  
David Gross

The Gottesman-Knill theorem states that a Clifford circuit acting on stabilizer states can be simulated efficiently on a classical computer. Recently, this result has been generalized to cover inputs that are close to a coherent superposition of logarithmically many stabilizer states. The runtime of the classical simulation is governed by the stabilizer extent, which roughly measures how many stabilizer states are needed to approximate the state. An important open problem is to decide whether the extent is multiplicative under tensor products. An affirmative answer would yield an efficient algorithm for computing the extent of product inputs, while a negative result implies the existence of more efficient classical algorithms for simulating largescale quantum circuits. Here, we answer this question in the negative. Our result follows from very general properties of the set of stabilizer states, such as having a size that scales subexponentially in the dimension, and can thus be readily adapted to similar constructions for other resource theories.


2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Ninnat Dangniam ◽  
Yun-Guang Han ◽  
Huangjun Zhu
Keyword(s):  

2020 ◽  
Vol 9 (5) ◽  
Author(s):  
Ning Bao ◽  
Newton Cheng ◽  
Sergio Hernández-Cuenca ◽  
Vincent P. Su

In this work, we generalize the graph-theoretic techniques used for the holographic entropy cone to study hypergraphs and their analogously-defined entropy cone. This allows us to develop a framework to efficiently compute entropies and prove inequalities satisfied by hypergraphs. In doing so, we discover a class of quantum entropy vectors which reach beyond those of holographic states and obey constraints intimately related to the ones obeyed by stabilizer states and linear ranks. We show that, at least up to 4 parties, the hypergraph cone is identical to the stabilizer entropy cone, thus demonstrating that the hypergraph framework is broadly applicable to the study of entanglement entropy. We conjecture that this equality continues to hold for higher party numbers and report on partial progress on this direction. To physically motivate this conjectured equivalence, we also propose a plausible method inspired by tensor networks to construct a quantum state from a given hypergraph such that their entropy vectors match.


Author(s):  
L. García-Álvarez ◽  
A. Ferraro ◽  
G. Ferrini

Abstract In this work, we study the Wigner phase-space representation of qubit states encoded in continuous variables (CV) by using the Gottesman–Kitaev–Preskill (GKP) mapping. We explore a possible connection between resources for universal quantum computation in discrete-variable (DV) systems, i.e. non-stabilizer states, and negativity of the Wigner function in CV architectures, which is a necessary requirement for quantum advantage. In particular, we show that the lowest Wigner logarithmic negativity corresponds to encoded stabilizer states, while the maximum negativity is associated with the most non-stabilizer states, H-type and T-type quantum states.


2020 ◽  
Vol 101 (6) ◽  
Author(s):  
Matthias Englbrecht ◽  
Barbara Kraus
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document