crash test dummy
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 8)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Jonas Siegfried Jehle ◽  
Volker Andreas Lange ◽  
Matthias Gerdts

Abstract The purpose of this work is to enable the use of the Dempster-Shafer evidence theory for uncertainty propagation on computationally expensive automotive crash simulations. This is necessary as the results of these simulations are influenced by multiple possibly uncertain aspects. To avoid negative effects, it is important to detect these factors and their consequences. The challenge when pursuing this effort is the prohibitively high computational cost of the evidence theory. To this end, we present a framework of existing methods that is specifically designed to reduce the necessary number of full model evaluations and parameters. An initial screening removes clearly irrelevant parameters to mitigate the curse of dimensionality. Next, we approximate the full-scale simulation using metamodels to accelerate output generation and thus enable the calculation of global sensitivity indices. These indicate effects of the parameters on the considered output and more profoundly sort out irrelevant parameters. After these steps, the evidence theory can be performed rapidly and feasibly due to fast-responding metamodel and reduced input dimension. It yields bounds for the cumulative distribution function of the considered quantity of interest. We apply the proposed framework to a simplified crash test dummy model. The elementary effects method is used for screening, a kriging metamodel emulates the finite element simulation, and Sobol' sensitivity indices are determined before the evidence theory is applied. The outcome of the framework provide engineers with information about the uncertainties they may face in hardware testing and that should be addressed in future vehicle design.


2021 ◽  
pp. 109-112
Author(s):  
Stephanie Bearce
Keyword(s):  

Author(s):  
Anna Carlsson ◽  
Johan Davidsson ◽  
Astrid Linder ◽  
Mats Y. Svensson

The objective of this study was to present the design of a prototype rear impact crash test dummy, representing a 50th percentile female, and compare its performance to volunteer response data. The intention was to develop a first crude prototype as a first step toward a future biofidelic 50th percentile female rear impact dummy. The current rear impact crash test dummy, BioRID II, represents a 50th percentile male, which may limit the assessment and development of whiplash protection systems with regard to female occupants. Introduction of this new dummy size will facilitate evaluation of seat and head restraint (HR) responses in both the average sized female and male in rear impacts. A 50th percentile female rear impact prototype dummy, the BioRID P50F, was developed from modified body segments originating from the BioRID II. The mass and rough dimensions of the BioRID P50F is representative of a 50th percentile female. The prototype dummy was evaluated against low severity rear impact sled tests comprising six female volunteers closely resembling a 50th percentile female with regard to stature and mass. The head/neck response of the BioRID P50F prototype resembled the female volunteer response corridors. The stiffness of the thoracic and lumbar spinal joints remained the same as the average sized male BioRID II, and therefore likely stiffer than joints of an average female. Consequently, the peak rearward angular displacement of the head and T1, and the rearward displacement of the T1, were lesser for the BioRID P50F in comparison to the female volunteers. The biofidelity of the BioRID P50F prototype thus has some limitations. Based on a seat response comparison between the BioRID P50F and the BioRID II, it can be concluded that the male BioRID II is an insufficient representation of the average female in the assessment of the dynamic seat response and effectiveness of whiplash protection systems.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1476
Author(s):  
Marek Jaśkiewicz ◽  
Damian Frej ◽  
Jan Matej ◽  
Rafał Chaba

The article presents a model of an anthropometric dummy designed for low velocity crash tests, designed in ADAMS. The model consists of rigid bodies connected with special joints with appropriately selected stiffness and damping. The simulation dummy has the appropriate dimensions, shape, and mass of individual elements to suit a 50 percentile male. The purpose of this article is to draw attention to low speed crash tests. Current dummies such as THOR and Hybrid III are used for crash tests at speeds above 40 km/h. In contrast, the low-speed test dummy currently used is the BioRID-II dummy, which is mainly adapted to the whiplash test at speeds of up to 16km/h. Thus, it can be seen that there is a gap in the use of crash test dummies. There are no low-speed dummies for side and front crash tests, and there are no dummies for rear crash tests between 16 km/h and 25 km/h. Which corresponds to a collision of a passenger vehicle with a hard obstacle at a speed of 30 km/h. Therefore, in collisions with low speeds of 20 km/h, the splash airbag will probably not be activated. The article contains the results of a computer simulation at a speed of 20 km/h vehicle out in the ADAMS program. These results were compared with the experimental results of the laboratory crash test using volunteers and the Hybrid III dummy. The simulation results are the basis for building the physical model dummy. The simulation aims to reflect the greatest possible compliance of the movements of individual parts of the human body during a collision at low speed.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2641
Author(s):  
Marek Jaśkiewicz ◽  
Damian Frej ◽  
Dariusz Tarnapowicz ◽  
Milos Poliak

The article presents the design of the upper limb joints of an anthropometric dummy intended for rear crash tests for low impact speeds. These joints represent the connection of the hand to the forearm, the forearm to the arm, and the arm to the shoulder. The designed joint is adapted to the construction of a dummy representing the 50th percentile male. The joints currently used on Hybrid III dummies require calibration after each crash test. The construction of the new joint ensures the appropriate strength of individual joint elements and the repeatable value of the joint characteristics without the need for frequent calibrations. The designed joints have the ability to set a variable stiffness characteristic, thanks to which it is possible to use this joint universally in dummies representing populations of other percentile sizes. The range of movement of the joints has been selected to reflect the range of mobility of the upper limb of an adult. The characteristics of the joints were compared with those used in the joints of the Hybrid III 50 percentile male dummy. Moreover, it should be noted that the constructed joints of the upper limb are made by hand; therefore, their comparison with the Hybrid III dummy shows some deviations in the moments of resistance. Making the joints with a 3D printer, taking into account the appropriate material, will ensure greater accuracy and will also result in joining the individual elements of the joint into a whole. The obtained results show slight differences between the moment of resistance in the joints of the constructed anthropometric dummy compared to the hybrid III dummy.


2020 ◽  
Vol 11 (3) ◽  
pp. 94-100
Author(s):  
Yutaro Kurano ◽  
Kazuki Hikida ◽  
Shinya Hibara ◽  
Yasushi Kawamura ◽  
Kazunori Maehara ◽  
...  

ACTA IMEKO ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 40 ◽  
Author(s):  
Marco Tarabini ◽  
Filip Gocanin ◽  
Bortolino Saggin ◽  
Diego Scaccabarozzi ◽  
Marco Bocciolone

<span lang="EN-GB">This work investigates the possibility of monitoring the activity and the falls of people in dwellings using three or more accelerometers fixed on the ground. The main difference between the proposed method and existing ones is the use of acceleration to estimate the impact force by using the apparent mass of the floor; the latter is experimentally identified in each room in which the tests were performed using the heel drop test. The study has two parts: 1. the apparent masses of different dwellings’ floors have been measured. 2. the ground reaction force is studied using a purposely designed force platform with a surface of approximately 2 m x 1 m. The force platform allowed the measurement of the forces generated by the falls of 21 subjects, of a crash test dummy (falling in front or rear direction from seated and standing position, with or without the interposition of objects on the trajectory), and of common objects (e.g. dishes, water bottles, books). The impact location is estimated by triangulation, using a wavelet algorithm derived from the existent literature. The results show the possibility of identifying the presence of subjects inside the room and the fall of subjects in the majority of dwellings. We conclude that the proposed method allows a clear distinction between the fall of subjects and objects, given that the difference in terms of force (which is estimated from the floor’s apparent mass and from the measured acceleration) is at least of one order of magnitude.</span>


2019 ◽  
Vol 285 ◽  
pp. 00022
Author(s):  
Krzysztof Wilde ◽  
Arkadiusz Tilsen ◽  
Stanisław Burzyński ◽  
Wojciech Witkowski

The article describes a comparison of two general methods of occupants safety estimation based on a numerical examples. The so-called direct method is mainly based on the HIC (Head Injury Criterion) of a crash test dummy in a vehicle with passive safety system while the indirect method uses a European standard approach to estimate impact severity level.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Tao Xu ◽  
Xiaoming Sheng ◽  
Tianyi Zhang ◽  
Huan Liu ◽  
Xiao Liang ◽  
...  

The crash test dummy, an important tool for car crash safety tests, is of great significance to explore the injury biomechanics of the occupants and improve the safety performance of the vehicle. The article mainly consists of four parts: brief introduction of injury mechanism, early experiments for obtaining biomechanical response (animal tests, cadaver tests, and volunteer tests), and development and validation of mechanical dummies and computational models. This study finds that the current crash test dummies are generally designed based on European and American, so they have limitations on the damage prediction of other regions. Further research in the crash test dummy needs the participation of various countries in order to develop a crash test dummy that meets the national conditions of each country. Simultaneously, it is necessary to develop dummies of vulnerable groups, such as the elderly dummy and obese people dummy.


2018 ◽  
Vol 291 ◽  
pp. 133-137 ◽  
Author(s):  
Masahito Hitosugi ◽  
Takeshi Koseki ◽  
Tomokazu Hariya ◽  
Genta Maeda ◽  
Shingo Moriguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document