video sensor networks
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 16)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
pp. 1-24
Author(s):  
Danilo Avola ◽  
Marco Cascio ◽  
Luigi Cinque ◽  
Gian Luca Foresti ◽  
Daniele Pannone

In recent years, the spread of video sensor networks both in public and private areas has grown considerably. Smart algorithms for video semantic content understanding are increasingly developed to support human operators in monitoring different activities, by recognizing events that occur in the observed scene. With the term event, we refer to one or more actions performed by one or more subjects (e.g., people or vehicles) acting within the same observed area. When these actions are performed by subjects that do not interact with each other, the events are usually classified as simple. Instead, when any kind of interaction occurs among subjects, the involved events are typically classified as complex. This survey starts by providing the formal definitions of both scene and event, and the logical architecture for a generic event recognition system. Subsequently, it presents two taxonomies based on features and machine learning algorithms, respectively, which are used to describe the different approaches for the recognition of events within a video sequence. This paper also discusses key works of the current state-of-the-art of event recognition, providing the list of datasets used to evaluate the performance of reported methods for video content understanding.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 206
Author(s):  
Can Chen ◽  
Yutong Wu ◽  
Chao Zhou ◽  
Dengyin Zhang

Huge video data has posed great challenges on computing power and storage space, triggering the emergence of distributed compressive video sensing (DCVS). Hardware-friendly characteristics of this technique have consolidated its position as one of the most powerful architectures in source-limited scenarios, namely, wireless video sensor networks (WVSNs). Recently, deep convolutional neural networks (DCNNs) are successfully applied in DCVS because traditional optimization-based methods are computationally elaborate and hard to meet the requirements of real-time applications. In this paper, we propose a joint sampling–reconstruction framework for DCVS, named “JsrNet”. JsrNet utilizes the whole group of frames as the reference to reconstruct each frame, regardless of key frames and non-key frames, while the existing frameworks only utilize key frames as the reference to reconstruct non-key frames. Moreover, different from the existing frameworks which only focus on exploiting complementary information between frames in joint reconstruction, JsrNet also applies this conception in joint sampling by adopting learnable convolutions to sample multiple frames jointly and simultaneously in an encoder. JsrNet fully exploits spatial–temporal correlation in both sampling and reconstruction, and achieves a competitive performance in both the quality of reconstruction and computational complexity, making it a promising candidate in source-limited, real-time scenarios.


Sign in / Sign up

Export Citation Format

Share Document