event recognition
Recently Published Documents


TOTAL DOCUMENTS

523
(FIVE YEARS 127)

H-INDEX

29
(FIVE YEARS 6)

2021 ◽  
Vol 46 (4) ◽  
pp. 1-49
Author(s):  
Alejandro Grez ◽  
Cristian Riveros ◽  
Martín Ugarte ◽  
Stijn Vansummeren

Complex event recognition (CER) has emerged as the unifying field for technologies that require processing and correlating distributed data sources in real time. CER finds applications in diverse domains, which has resulted in a large number of proposals for expressing and processing complex events. Existing CER languages lack a clear semantics, however, which makes them hard to understand and generalize. Moreover, there are no general techniques for evaluating CER query languages with clear performance guarantees. In this article, we embark on the task of giving a rigorous and efficient framework to CER. We propose a formal language for specifying complex events, called complex event logic (CEL), that contains the main features used in the literature and has a denotational and compositional semantics. We also formalize the so-called selection strategies, which had only been presented as by-design extensions to existing frameworks. We give insight into the language design trade-offs regarding the strict sequencing operators of CEL and selection strategies. With a well-defined semantics at hand, we discuss how to efficiently process complex events by evaluating CEL formulas with unary filters. We start by introducing a formal computational model for CER, called complex event automata (CEA), and study how to compile CEL formulas with unary filters into CEA. Furthermore, we provide efficient algorithms for evaluating CEA over event streams using constant time per event followed by output-linear delay enumeration of the results.


Author(s):  
Santhoshkumar SP ◽  
Kumar M Praveen ◽  
Beaulah H Lilly

Video has more information than the isolated images. Processing, analyzing and understanding of contents present in videos are becoming very important. Consumer videos are generally captured by amateurs using handheld cameras of events and it contains considerable camera motion, occlusion, cluttered background, and large intraclass variations within the same type of events, making their visual cues highly variable and less discriminant. So visual event recognition is an extremely challenging task in computer vision. A visual event recognition framework for consumer videos is framed by leveraging a large amount of loosely labeled web videos. The videos are divided into training and testing sets manually. A simple method called the Aligned Space-Time Pyramid Matching method was proposed to effectively measure the distances between two video clips from different domains. Each video is divided into space-time volumes over multiple levels. A new transfer learning method is referred to as Adaptive Multiple Kernel Learning fuse the information from multiple pyramid levels, features, and copes with the considerable variation in feature distributions between videos from two domains web video domain and consumer video domain.With the help of MATLAB Simulink videos are divided and compared with web domain videos. The inputs are taken from the Kodak data set and the results are given in the form of MATLAB simulation.


2021 ◽  
Vol 7 ◽  
pp. e764
Author(s):  
Yazeed Ghadi ◽  
Israr Akhter ◽  
Mohammed Alarfaj ◽  
Ahmad Jalal ◽  
Kibum Kim

The study of human posture analysis and gait event detection from various types of inputs is a key contribution to the human life log. With the help of this research and technologies humans can save costs in terms of time and utility resources. In this paper we present a robust approach to human posture analysis and gait event detection from complex video-based data. For this, initially posture information, landmark information are extracted, and human 2D skeleton mesh are extracted, using this information set we reconstruct the human 2D to 3D model. Contextual features, namely, degrees of freedom over detected body parts, joint angle information, periodic and non-periodic motion, and human motion direction flow, are extracted. For features mining, we applied the rule-based features mining technique and, for gait event detection and classification, the deep learning-based CNN technique is applied over the mpii-video pose, the COCO, and the pose track datasets. For the mpii-video pose dataset, we achieved a human landmark detection mean accuracy of 87.09% and a gait event recognition mean accuracy of 90.90%. For the COCO dataset, we achieved a human landmark detection mean accuracy of 87.36% and a gait event recognition mean accuracy of 89.09%. For the pose track dataset, we achieved a human landmark detection mean accuracy of 87.72% and a gait event recognition mean accuracy of 88.18%. The proposed system performance shows a significant improvement compared to existing state-of-the-art frameworks.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhao Lijun ◽  
Hu Guiqiu ◽  
Li Qingsheng ◽  
Ding Guanhua

Data mining in real-time data streams is associated with multiple types of uncertainty, which often leads the respective categorizers to make erroneous predictions related to the presence or absence of complex events. But recognizing complex abnormal events, even those that occur in extremely rare cases, offers significant support to decision-making systems. Therefore, there is a need for robust recognition mechanisms that will be able to predict or recognize when an abnormal event occurs or will occur on a data stream. Considering this need, this paper presents an Intuitionistic Tumbling Windows event calculus (ITWec) methodology. It is an innovative data analysis system that combines for the first time in the literature a set of multiple systems for Complex Abnormal Event Recognition (CAER). In the proposed system, the probabilities of the existence of a high-level complex abnormal event for each period are initially calculated nonparametrically, based on the probabilities of the low-level events associated with it. Because cumulative results are sought in consecutive, nonoverlapping sections of the data stream, the method uses the clearly defined rules of initialization and termination of the tumbling windows method, where there is an explicit determination of the time interval within which several blocks of a particular stream are investigated window. Finally, the number of maximum probable intervals in which an event is likely to occur based on a certain probability threshold is calculated, based on a parametric representation of intuitively fuzzy sets.


2021 ◽  
Author(s):  
Xinmeng Chen ◽  
Xuchen Gong ◽  
Ming Cheng ◽  
Qi Deng ◽  
Ming Li
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6622
Author(s):  
Barış Bayram ◽  
Gökhan İnce

Acoustic scene analysis (ASA) relies on the dynamic sensing and understanding of stationary and non-stationary sounds from various events, background noises and human actions with objects. However, the spatio-temporal nature of the sound signals may not be stationary, and novel events may exist that eventually deteriorate the performance of the analysis. In this study, a self-learning-based ASA for acoustic event recognition (AER) is presented to detect and incrementally learn novel acoustic events by tackling catastrophic forgetting. The proposed ASA framework comprises six elements: (1) raw acoustic signal pre-processing, (2) low-level and deep audio feature extraction, (3) acoustic novelty detection (AND), (4) acoustic signal augmentations, (5) incremental class-learning (ICL) (of the audio features of the novel events) and (6) AER. The self-learning on different types of audio features extracted from the acoustic signals of various events occurs without human supervision. For the extraction of deep audio representations, in addition to visual geometry group (VGG) and residual neural network (ResNet), time-delay neural network (TDNN) and TDNN based long short-term memory (TDNN–LSTM) networks are pre-trained using a large-scale audio dataset, Google AudioSet. The performances of ICL with AND using Mel-spectrograms, and deep features with TDNNs, VGG, and ResNet from the Mel-spectrograms are validated on benchmark audio datasets such as ESC-10, ESC-50, UrbanSound8K (US8K), and an audio dataset collected by the authors in a real domestic environment.


Sign in / Sign up

Export Citation Format

Share Document