tensor contraction
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 16)

H-INDEX

11
(FIVE YEARS 1)

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1817
Author(s):  
Nicola Loperfido

The canonical skewness vector is an analytically simple function of the third-order, standardized moments of a random vector. Statistical applications of this skewness measure include semiparametric modeling, independent component analysis, model-based clustering, and multivariate normality testing. This paper investigates some properties of the canonical skewness vector with respect to representations, transformations, and norm. In particular, the paper shows its connections with tensor contraction, scalar measures of multivariate kurtosis and Mardia’s skewness, the best-known scalar measure of multivariate skewness. A simulation study empirically compares the powers of tests for multivariate normality based on the squared norm of the canonical skewness vector and on Mardia’s skewness. An example with financial data illustrates the statistical applications of the canonical skewness vector.


Author(s):  
Thomas Herault ◽  
Yves Robert ◽  
George Bosilca ◽  
Robert J. Harrison ◽  
Cannada A. Lewis ◽  
...  

2020 ◽  
Vol 102 (6) ◽  
Author(s):  
Roman Schutski ◽  
Taras Khakhulin ◽  
Ivan Oseledets ◽  
Dmitry Kolmakov

Author(s):  
R. Ju ◽  
W. Fan ◽  
W. D. Zhu

Abstract An efficient Galerkin averaging-incremental harmonic balance (EGA-IHB) method is developed based on the fast Fourier transform (FFT) and tensor contraction to increase efficiency and robustness of the IHB method when calculating periodic responses of complex nonlinear systems with non-polynomial nonlinearities. As a semi-analytical method, derivation of formulae and programming are significantly simplified in the EGA-IHB method. The residual vector and Jacobian matrix corresponding to nonlinear terms in the EGA-IHB method are expressed using truncated Fourier series. After calculating Fourier coefficient vectors using the FFT, tensor contraction is used to calculate the Jacobian matrix, which can significantly improve numerical efficiency. Since inaccurate results may be obtained from discrete Fourier transform-based methods when aliasing occurs, the minimal non-aliasing sampling rate is determined for the EGA-IHB method. Performances of the EGA-IHB method are analyzed using several benchmark examples; its accuracy, efficiency, convergence, and robustness are analyzed and compared with several widely used semi-analytical methods. The EGA-IHB method has high efficiency and good robustness for both polynomial and nonpolynomial nonlinearities, and it has considerable advantages over the other methods.


2020 ◽  
Author(s):  
Chenchen Song ◽  
Todd J. Martínez ◽  
Jeffrey B. Neaton

We show how the combination of automatic differentiation (AD) and diagrammatic notation can facilitate the development of analytical nuclear derivatives for tensor hyper-contraction based (THC) electronic structure methods. The automatically-derived gradients are guaranteed to have the same scaling in terms of both operation count and memory footprint as the underlying energy calculations, and the computation of a gradient is roughly three times as costly as the underlying energy. The new AD/diagrammatic approach enables the first cubic scaling implementation of nuclear derivatives for THC tensors fitted in molecular orbital basis (MO-THC). Furthermore, application of this new approach to THC-MP2 analytical gradients leads to an implementation which is at least four times faster than the previously reported, manually-derived implementation. Finally, we apply the new approach to the 14 tensor contraction patterns appearing in the supporting subspace formulation of multireference perturbation theory, laying the foundation for future developments of analytical nuclear gradients and nonadiabatic coupling vectors for multi-state CASPT2. <br>


Sign in / Sign up

Export Citation Format

Share Document