thermally actuated
Recently Published Documents


TOTAL DOCUMENTS

301
(FIVE YEARS 40)

H-INDEX

27
(FIVE YEARS 3)

Photonics ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 42
Author(s):  
Ruediger Grunwald ◽  
Mathias Jurke ◽  
Martin Bock ◽  
Max Liebmann ◽  
Binal Poyyathuruthy Bruno ◽  
...  

Combining the specific advantages of high-resolution liquid-crystal-on-silicon spatial light modulators (LCoS-SLMs) and reflective or refractive micro-electro-mechanical systems (MEMS) presents new prospects for the generation of structured light fields. In particular, adaptive self-apodization schemes can significantly reduce diffraction by low-loss spatial filtering. The concept enables one to realize low-dispersion shaping of nondiffracting femtosecond wavepackets and to temporally switch, modulate or deflect spatially structured beams. Adaptive diffraction management by structured illumination is demonstrated for piezo-based and thermally actuated axicons, spiral phase plates (SPPs) and Fresnel bi-mirrors. Improved non-collinear autocorrelation with angular-tunable Fresnel-bi-mirrors via self-apodized illumination and phase contrast of an SLM is proposed. An extension of the recently introduced nondiffractive Talbot effect to a tunable configuration by combining an SLM and a fluid lens is reported. Experimental results for hexagonal as well as orthogonal array beams are presented.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Matteo Calvarese ◽  
Petra Paiè ◽  
Francesco Ceccarelli ◽  
Federico Sala ◽  
Andrea Bassi ◽  
...  

AbstractWe present an optimization of the dynamics of integrated optical switches based on thermal phase shifters. These devices have been fabricated in the volume of glass substrates by femtosecond laser micromachining and are constituted by an integrated Mach–Zehnder interferometer and a superficial heater. Simulations, surface micromachining and innovative layouts allowed us to improve the temporal response of the optical switches down to a few milliseconds. In addition, taking advantage of an electrical pulse shaping approach where an optimized voltage signal is applied to the heater, we proved a switching time as low as 78 µs, about two orders of magnitude shorter with respect to the current state of the art of thermally-actuated optical switches in glass.


2021 ◽  
Author(s):  
Alaba Bamido ◽  
Debjyoti Banerjee

Abstract A normally-open thermally-actuated microvalve was designed (using microfabrication/soft-lithography techniques involving 3D Printed molds), assembled and tested. The motivation of the research work is to develop an array of microvalves for precise delivery of water to individual plants in a field (with the goal of developing smart irrigation systems for high value cash-crops in the agricultural sector). It is currently impossible to control application of irrigation-water at the level of a single plant. If such a capability were practically available on farms, the result would be a step change in precision agriculture, such that the output of every plant in a farm field could be optimized (i.e., food-water-energy nexus in sustainability applications). The aim of this study is to develop and test a microfluidic system (consisting of a microvalve array) that could be controlled, capillary by capillary, to deliver the needed amount of water to individual plants in a large field. Two types of test fluids were leveraged for thermo-hydraulic actuation of the microvalves developed in this study: (a) Design-I: using air, and (b) Design-II: using Phase Change Material (PCM). The PCM used in this study is PureTemp29. The proposed approach enabled a simple and cheap design for microvalves that can be manufactured easily and are robust to weather conditions (e.g., when exposed to the elements in orchards and open fields). Other advantages include: safe and reliable operation; low power consumption; can tolerate anomalous pressure loads/fluctuations; simple actuation; affords easy control schemes; is amenable for remote control; provides long-term reliability (life-cycle duration estimated to be 3∼5 years); can be mass produced and is low maintenance (possibly requiring no maintenance over the life time of operation). The microvalve consists of two layers: a flow layer and a control layer. The control layer is heated from below and contains a microfluidic chamber with a flexible polymeric thin-membrane (200 microns in thickness) on top. The device is microfabricated from Poly-Di-Methyl-Siloxane (PDMS) using soft lithography techniques (using a 3D Printed mold). The control chamber contains either air (thermo-pneumatic actuation) or PCM (thermo-hydraulic actuation involving repeated melting/freezing of PCM). The flow layer contains the flow channel (inlet and outlet ports, horizontal section and valve seat). The experimental results from testing the efficacy of the two types of micro-valves show a 60% reduction (for thermo-pneumatic actuation using air) and 40% reduction (for thermo-hydraulic actuation using PCM) in water flow rates for similar actuation conditions (i.e., heater temperature values). PCM design is expected to consume less power (lower OPEX) for long-term actuation but may have slower actuation speed and have higher manufacturing costs (CAPEX). Air actuation design is expected to consume more power (higher OPEX) for longer-term operation but may have faster actuation speeds and lower manufacturing costs (CAPEX). Computational Fluid Dynamics (CFD) simulations were performed to investigate the effect of flowing water (in the microfluidic channel) on the average absolute pressure and temperature of air in the actuation chamber. The CFD simulations were performed using a commercial tool (Ansys™ 2019R1®). The results from the CFD simulations are presented in this study.


2021 ◽  
Author(s):  
Yen-Lin Han ◽  
Mark Taylor ◽  
Kees Westra

2021 ◽  
Author(s):  
Ramuel Safarkoolan ◽  
Emre Ozen ◽  
Vinod Narayanan ◽  
Sushil Bhavnani

2021 ◽  
Author(s):  
Debjyoti Banerjee ◽  
Alaba Bamido ◽  
Ashok Thyagarajan ◽  
Nandan Shettigar

2021 ◽  
Author(s):  
Ramuel Safarkoolan ◽  
Emre Ozen ◽  
Vinod Narayanan ◽  
Sushil Bhavnani

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Muhsincan Sesen ◽  
Christopher J. Rowlands

AbstractMicrofluidics has enabled low volume biochemistry reactions to be carried out at the point-of-care. A key component in microfluidics is the microfluidic valve. Microfluidic valves are not only useful for directing flow at intersections but also allow mixtures/dilutions to be tuned real-time and even provide peristaltic pumping capabilities. In the transition from chip-in-a-lab to lab-on-a-chip, it is essential to ensure that microfluidic valves are designed to require less peripheral equipment and that they are transportable. In this paper, a thermally-actuated microfluidic valve is presented. The valve itself is fabricated with off-the-shelf components without the need for sophisticated cleanroom techniques. It is shown that multiple valves can be controlled and operated via a power supply and an Arduino microcontroller; an important step towards transportable microfluidic devices capable of carrying out analytical assays at the point-of-care. It is been calculated that a single actuator costs less than $1, this highlights the potential of the presented valve for scaling out. The valve operation is demonstrated by adjusting the ratio of a water/dye mixture in a continuous flow microfluidic chip with Y-junction channel geometry. The power required to operate one microfluidic valve has been characterised both theoretically and experimentally. Cyclical operation of the valve has been demonstrated for 65 h with 585 actuations. The presented valve is capable of actuating rectangular microfluidic channels of 500 μm × 50 μm with an expected temperature increase of up to 5 °C. The fastest actuation times achieved were 2 s for valve closing (heating) and 9 s for valve opening (cooling).


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Ciro Pentangelo ◽  
Simone Atzeni ◽  
Francesco Ceccarelli ◽  
Roberto Osellame ◽  
Andrea Crespi

Sign in / Sign up

Export Citation Format

Share Document