microfluidic valves
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 11)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol 8 ◽  
Author(s):  
Anh Tong ◽  
Roman Voronov

In 2020, nearly 107,000 people in the U.S needed a lifesaving organ transplant, but due to a limited number of donors, only ∼35% of them have actually received it. Thus, successful bio-manufacturing of artificial tissues and organs is central to satisfying the ever-growing demand for transplants. However, despite decades of tremendous investments in regenerative medicine research and development conventional scaffold technologies have failed to yield viable tissues and organs. Luckily, microfluidic scaffolds hold the promise of overcoming the major challenges associated with generating complex 3D cultures: 1) cell death due to poor metabolite distribution/clearing of waste in thick cultures; 2) sacrificial analysis due to inability to sample the culture non-invasively; 3) product variability due to lack of control over the cell action post-seeding, and 4) adoption barriers associated with having to learn a different culturing protocol for each new product. Namely, their active pore networks provide the ability to perform automated fluid and cell manipulations (e.g., seeding, feeding, probing, clearing waste, delivering drugs, etc.) at targeted locations in-situ. However, challenges remain in developing a biomaterial that would have the appropriate characteristics for such scaffolds. Specifically, it should ideally be: 1) biocompatible—to support cell attachment and growth, 2) biodegradable—to give way to newly formed tissue, 3) flexible—to create microfluidic valves, 4) photo-crosslinkable—to manufacture using light-based 3D printing and 5) transparent—for optical microscopy validation. To that end, this minireview summarizes the latest progress of the biomaterial design, and of the corresponding fabrication method development, for making the microfluidic scaffolds.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shuailong Zhang ◽  
Mohamed Elsayed ◽  
Ran Peng ◽  
Yujie Chen ◽  
Yanfeng Zhang ◽  
...  

AbstractThere is great interest in the development of micromotors which can convert energy to motion in sub-millimeter dimensions. Micromachines take the micromotor concept a step further, comprising complex systems in which multiple components work in concert to effectively realize complex mechanical tasks. Here we introduce light-driven micromotors and micromachines that rely on optoelectronic tweezers (OET). Using a circular micro-gear as a unit component, we demonstrate a range of new functionalities, including a touchless micro-feed-roller that allows the programming of precise three-dimensional particle trajectories, multi-component micro-gear trains that serve as torque- or velocity-amplifiers, and micro-rack-and-pinion systems that serve as microfluidic valves. These sophisticated systems suggest great potential for complex micromachines in the future, for application in microrobotics, micromanipulation, microfluidics, and beyond.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254524
Author(s):  
Shane Hoang ◽  
Konstantinos Karydis ◽  
Philip Brisk ◽  
William H. Grover

Pneumatically-actuated soft robots have advantages over traditional rigid robots in many applications. In particular, their flexible bodies and gentle air-powered movements make them more suitable for use around humans and other objects that could be injured or damaged by traditional robots. However, existing systems for controlling soft robots currently require dedicated electromechanical hardware (usually solenoid valves) to maintain the actuation state (expanded or contracted) of each independent actuator. When combined with power, computation, and sensing components, this control hardware adds considerable cost, size, and power demands to the robot, thereby limiting the feasibility of soft robots in many important application areas. In this work, we introduce a pneumatic memory that uses air (not electricity) to set and maintain the states of large numbers of soft robotic actuators without dedicated electromechanical hardware. These pneumatic logic circuits use normally-closed microfluidic valves as transistor-like elements; this enables our circuits to support more complex computational functions than those built from normally-open valves. We demonstrate an eight-bit nonvolatile random-access pneumatic memory (RAM) that can maintain the states of multiple actuators, control both individual actuators and multiple actuators simultaneously using a pneumatic version of time division multiplexing (TDM), and set actuators to any intermediate position using a pneumatic version of analog-to-digital conversion. We perform proof-of-concept experimental testing of our pneumatic RAM by using it to control soft robotic hands playing individual notes, chords, and songs on a piano keyboard. By dramatically reducing the amount of hardware required to control multiple independent actuators in pneumatic soft robots, our pneumatic RAM can accelerate the spread of soft robotic technologies to a wide range of important application areas.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Muhsincan Sesen ◽  
Christopher J. Rowlands

AbstractMicrofluidics has enabled low volume biochemistry reactions to be carried out at the point-of-care. A key component in microfluidics is the microfluidic valve. Microfluidic valves are not only useful for directing flow at intersections but also allow mixtures/dilutions to be tuned real-time and even provide peristaltic pumping capabilities. In the transition from chip-in-a-lab to lab-on-a-chip, it is essential to ensure that microfluidic valves are designed to require less peripheral equipment and that they are transportable. In this paper, a thermally-actuated microfluidic valve is presented. The valve itself is fabricated with off-the-shelf components without the need for sophisticated cleanroom techniques. It is shown that multiple valves can be controlled and operated via a power supply and an Arduino microcontroller; an important step towards transportable microfluidic devices capable of carrying out analytical assays at the point-of-care. It is been calculated that a single actuator costs less than $1, this highlights the potential of the presented valve for scaling out. The valve operation is demonstrated by adjusting the ratio of a water/dye mixture in a continuous flow microfluidic chip with Y-junction channel geometry. The power required to operate one microfluidic valve has been characterised both theoretically and experimentally. Cyclical operation of the valve has been demonstrated for 65 h with 585 actuations. The presented valve is capable of actuating rectangular microfluidic channels of 500 μm × 50 μm with an expected temperature increase of up to 5 °C. The fastest actuation times achieved were 2 s for valve closing (heating) and 9 s for valve opening (cooling).


Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 395 ◽  
Author(s):  
Pablo Morales Navarrete ◽  
Jie Yuan

On-chip cell culture devices have been actively developed for both mammalian cells and bacteria. Most designs are based on PDMS multi-layer microfluidic valves, which require complicated fabrication and operation. In this work, single-layer PDMS microfluidic valves are introduced in the design of an on-chip culture chamber for E. coli bacteria. To enable the constant flow of culturing medium, we have developed a (semi-)always-closed single-layer microfluidic valve. As a result, the growth chamber can culture bacteria over long duration. The device is applied for the whole-cell detection of heavy metal ions with genetically modified E. coli. The platform is tested with culturing period of 3 h. It is found to achieve a limit-of-detection (LoD) of 44.8 ppb for Cadmium ions.


Langmuir ◽  
2020 ◽  
Vol 36 (5) ◽  
pp. 1138-1146
Author(s):  
Sagar N. Agnihotri ◽  
Mohammad Reza Raveshi ◽  
Rajneesh Bhardwaj ◽  
Adrian Neild

2019 ◽  
Vol 296 ◽  
pp. 316-323 ◽  
Author(s):  
Azam Gholizadeh ◽  
Siamak Abbaslou ◽  
Pengfei Xie ◽  
Ara Knaian ◽  
Mehdi Javanmard

2019 ◽  
Vol 292 ◽  
pp. 233-240 ◽  
Author(s):  
Mohammad Reza Raveshi ◽  
Sagar N. Agnihotri ◽  
Muhsincan Sesen ◽  
Rajneesh Bhardwaj ◽  
Adrian Neild

Sign in / Sign up

Export Citation Format

Share Document