pumilio proteins
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Omer Ziv ◽  
Svetlana Farberov ◽  
Jian You Lau ◽  
Eric A Miska ◽  
Grzegorz Kudla ◽  
...  

It is increasingly appreciated that long non-coding RNAs (lncRNAs) carry out important functions in mammalian cells, but how these are encoded in their sequences and manifested in their structures remains largely unknown. Some lncRNAs bind to and modulate the availability of RNA binding proteins, but the structural principles that underlie this mode of regulation are underexplored. Here, we focused on the NORAD lncRNA, which binds Pumilio proteins and modulates their ability to repress hundreds of mRNA targets. We probed the RNA structure and long-range RNA-RNA interactions formed by NORAD inside cells, under different stressful conditions. We discovered that NORAD structure is highly modular, and consists of well-defined domains that contribute independently to NORAD function. We discovered that NORAD structure spatially clusters the Pumilio binding sites along NORAD in a manner that contributes to the de-repression of Pumilio target proteins. Following arsenite stress, the majority of NORAD structure undergoes relaxation and forms inter-molecular interactions with RNAs that are targeted to stress granules. NORAD sequence thus dictates elaborated structural domain organization that facilitates its function on multiple levels, and which helps explain the extensive evolutionary sequence conservation of NORAD regions that are not predicted to directly bind Pumilio proteins.


2021 ◽  
Author(s):  
Yuanyuan Gong ◽  
Zukai Liu ◽  
Yihang Yuan ◽  
Zhenzhen Yang ◽  
Jiawei Zhang ◽  
...  

Abstract PUMILIO (PUM) proteins belong to the highly conserved PUF family post-transcriptional regulators involved in diverse biological processes. However, their function in carcinogenesis remains under explored. Here, we found that the expression of Pum1 and Pum2 are increased in clinical colorectal cancer (CRC). Intestine-specific knockout of Pum1 and Pum2 significantly inhibited the progression of colitis associated cancer in the AOM/DSS model. Knockout or knockdown of Pum1 and/or Pum2 resulted in a significant decrease in the tumorigenicity. In addition, delayed G1/S transition was observed. We identified p21/Cdkn1a as direct target of PUM1, and abrogation of the PUM1 binding site in p21 resulted in decreased tumor cell growth as well as delayed G1/S transition. Furthermore, intravenous injection of nanoparticle-encapsulated anti-Pum1 and Pum2 siRNAs reduced colorectal tumor growth in murine orthotopic colon cancer models. These findings reveal a tumor growth promoting role of PUM proteins in CRC and its potential as therapeutic targets.


RNA ◽  
2021 ◽  
pp. rna.078436.120
Author(s):  
Isioma I.I. Enwerem ◽  
Nathan D. Elrod ◽  
Chung-Te Chang ◽  
Ai Lin ◽  
Ping Ji ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Isioma I.I. Enwerem ◽  
Nathan D. Elrod ◽  
Chung-Te Chang ◽  
Ai Lin ◽  
Ping Ji ◽  
...  

AbstractPumilio paralogs, PUM1 and PUM2, are sequence-specific RNA-binding proteins that are essential for vertebrate development and neurological functions. PUM1&2 negatively regulate gene expression by accelerating degradation of specific mRNAs. Here, we determined the repression mechanism and impact of human PUM1&2 on the transcriptome. We identified subunits of the CCR4-NOT (CNOT) deadenylase complex required for stable interaction with PUM1&2 and to elicit CNOT-dependent repression. Isoform-level RNA sequencing revealed broad co-regulation of target mRNAs through the PUM-CNOT repression mechanism.Functional dissection of the domains of PUM1&2 identified a conserved N-terminal region that confers the predominant repressive activity via direct interaction with CNOT. In addition, we show that the mRNA decapping enzyme, DCP2, has an important role in repression by PUM1&2 N-terminal regions. Our results support a molecular model of repression by human PUM1&2 via direct recruitment of CNOT deadenylation machinery in a decapping-dependent mRNA decay pathway.


2020 ◽  
Author(s):  
Su Hyun Park ◽  
Hyung-Sae Kim ◽  
Prakash Jyoti Kalita ◽  
Sang-Bong Choi

Abstract Background: Pumilio RNA-binding proteins are evolutionarily conserved throughout eukaryotes and are involved in RNA decay, transport, and translation repression in the cytoplasm. Although a majority of Pumilio proteins function in the cytoplasm, two nucleolar forms have been reported to have a function in rRNA processing in Arabidopsis. The species of the genus Chara have been known to be most closely related to land plants, as they share several characteristics with modern Embryophyta. Results: In this study, we identified two putative nucleolar Pumilio protein genes, namely, ChPUM2 and ChPUM3, from the transcriptome of Chara corallina. Of the two ChPUM proteins, ChPUM2 was most similar in amino acid sequence (27% identity and 45% homology) and predicted protein structure to Arabidopsis APUM23, while ChPUM3 was similar to APUM24 (35% identity and 54% homology). The transient expression of 35S:ChPUM2-RFP and 35S:ChPUM3-RFP showed nucleolar localization of fusion proteins in tobacco leaf cells, similar to the expression of 35S:APUM23-GFP and 35S:APUM24-GFP. Moreover, 35S:ChPUM2 complemented the morphological defects of the apum23 phenotypes but not those of apum24, while 35S:ChPUM3 could not complement the apum23 and apum24 mutants. Similarly, the 35S:ChPUM2/apum23 plants rescued the pre-rRNA processing defect of apum23, but 35S:ChPUM3/apum24+/- plants did not rescue that of apum24. Consistent with these complementation results, a known target RNA-binding sequence at the end of the 18S rRNA (5'-GGAAUUGACGG) for APUM23 was conserved in Arabidopsis and C. corallina, whereas a target region of ITS2 pre-rRNA for APUM24 was 156 nt longer in C. corallina than in A. thaliana. Moreover, ChPUM2 and APUM23 were predicted to have nearly identical structures, but ChPUM3 and APUM24 have different structures in the 5th C-terminal Puf RNA-binding domain, which had a longer random coil in ChPUM3 than in APUM24. Conclusions: ChPUM2 of C. corallina was functional in Arabidopsis, similar to APUM23, but ChPUM3 did not substitute for APUM24 in Arabidopsis. Protein homology modeling showed high coverage between APUM23 and ChPUM2, but displayed structural differences between APUM24 and ChPUM3. Together with the protein structure of ChPUM3 itself, a short ITS2 of Arabidopsis pre-rRNA may interrupt the binding of ChPUM3 to 3’-extended 5.8S pre-rRNA.


2020 ◽  
Author(s):  
Su Hyun Park ◽  
Hyung-Sae Kim ◽  
Prakash Jyoti Kalita ◽  
Sang-Bong Choi

Abstract Background: Pumilio RNA-binding proteins are evolutionarily conserved throughout eukaryotes and are involved in RNA decay, transport, and translation repression in the cytoplasm. Although a majority of Pumilio proteins function in the cytoplasm, two nucleolar forms have been reported to have a function in rRNA processing in Arabidopsis. The species of the genus Chara have been known to be most closely related to land plants, as they share several characteristics with modern Embryophyta.Results: In this study, we identified two putative nucleolar Pumilio protein genes, namely, ChPUM2 and ChPUM3, from the transcriptome of Chara corallina. Of the two ChPUM proteins, ChPUM2 was most similar in amino acid sequence (27% identity and 45% homology) and predicted protein structure to Arabidopsis APUM23, while ChPUM3 was similar to APUM24 (35% identity and 54% homology). The transient expression of 35S:ChPUM2-RFP and 35S:ChPUM3-RFP showed nucleolar localization of fusion proteins in tobacco leaf cells, similar to the expression of 35S:APUM23-GFP and 35S:APUM24-GFP. Moreover, 35S:ChPUM2 complemented the morphological defects of the apum23 phenotypes but not those of apum24, while 35S:ChPUM3 could not complement the apum23 and apum24 mutants. Similarly, the 35S:ChPUM2/apum23 plants rescued the pre-rRNA processing defect of apum23, but 35S:ChPUM3/apum24+/- plants did not rescue that of apum24. Consistent with these complementation results, a known target RNA-binding sequence at the end of the 18S rRNA (5'-GGAAUUGACGG) for APUM23 was conserved in Arabidopsis and C. corallina, whereas a target region of ITS2 pre-rRNA for APUM24 was 156 nt longer in C. corallina than in A. thaliana. Moreover, ChPUM2 and APUM23 were predicted to have nearly identical structures, but ChPUM3 and APUM24 have different structures in the 5th C-terminal Puf RNA-binding domain, which had a longer random coil in ChPUM3 than in APUM24.Conclusions: ChPUM2 of C. corallina was functional in Arabidopsis, similar to APUM23, but ChPUM3 did not substitute for APUM24 in Arabidopsis. Protein homology modeling showed high coverage between APUM23 and ChPUM2, but displayed structural differences between APUM24 and ChPUM3. Together with the protein structure of ChPUM3 itself, a short ITS2 of Arabidopsis pre-rRNA may interrupt the binding of ChPUM3 to 3’-extended 5.8S pre-rRNA.


2020 ◽  
Vol 117 (14) ◽  
pp. 7851-7862 ◽  
Author(s):  
Katherine E. Uyhazi ◽  
Yiying Yang ◽  
Na Liu ◽  
Hongying Qi ◽  
Xiao A. Huang ◽  
...  

Gene regulation in embryonic stem cells (ESCs) has been extensively studied at the epigenetic-transcriptional level, but not at the posttranscriptional level. Pumilio (Pum) proteins are among the few known translational regulators required for stem-cell maintenance in invertebrates and plants. Here we report the essential function of two murine Pum proteins, Pum1 and Pum2, in ESCs and early embryogenesis. Pum1/2 double-mutant ESCs display severely reduced self-renewal and differentiation, and Pum1/2 double-mutant mice are developmentally delayed at the morula stage and lethal by embryonic day 8.5. Remarkably, Pum1-deficient ESCs show increased expression of pluripotency genes but not differentiation genes, whereas Pum2-deficient ESCs show decreased pluripotency markers and accelerated differentiation. Thus, despite their high homology and overlapping target messenger RNAs (mRNAs), Pum1 promotes differentiation while Pum2 promotes self-renewal in ESCs. Pum1 and Pum2 achieve these two complementary aspects of pluripotency by forming a negative interregulatory feedback loop that directly regulates at least 1,486 mRNAs. Pum1 and Pum2 regulate target mRNAs not only by repressing translation, but also by promoting translation and enhancing or reducing mRNA stability of different target mRNAs. Together, these findings reveal distinct roles of individual mammalian Pum proteins in ESCs and their essential functions in ESC pluripotency and embryogenesis.


2019 ◽  
Author(s):  
Su Hyun Park ◽  
Hyung-Sae im ◽  
Prakash Jyoti Kalita ◽  
Sang-Bong Choi

Abstract Background: Pumilio RNA-binding proteins are evolutionarily conserved throughout all eukaryotes and are involved in RNA decay, transport, and translation repression in the cytoplasm. Even though a majority of Pumilio proteins function in the cytoplasm, two nucleolar forms have been reported to have a function in rRNA processing in Arabidopsis. Chara is known to be most closely related to land plants as it shares several characteristics with modern embryophytes. Results: In this study, we identified two putative nucleolar Pumilio protein genes, ChPUM2 and ChPUM3 , from the transcriptome of Chara corallina . Of the two ChPUM proteins, ChPUM2 was the most similar to Arabidopsis APUM23 in the amino acid sequence (27% identity and 45% homology) and the predicted protein structure, while ChPUM3 was similar to APUM24 (35% identity and 54% homology). The transient expression of 35S:ChPUM2-RFP and 35S:ChPUM3-RFP showed nucleolar localization of fusion proteins in tobacco leaf cells, similar to the expression of APUM23-GFP and APUM24-GFP. Moreover, 35S:ChPUM2 complemented the morphological defects of the apum23 phenotypes but not those of apum24, while 35S:ChPUM3 could not complement the apum23 and apum24 mutants. Similarly, the 35S:ChPUM2/apum23 plants rescued the pre-rRNA processing defect of apum23 , but 35S:ChPUM3/apum24 +/- plants did not rescue that of apum24 . Consistent with these complementation results, a known target RNA-binding sequence at the end of the 18S rRNA (5'-GAAUUGACGG) for APUM23 was conserved in Arabidopsis and Chara, whereas a target region of ITS2 pre-rRNA for APUM24 was 156 nt longer in Chara than in Arabidopsis. Moreover, ChPUM2 and APUM23 were predicted to have nearly identical structures, but ChPUM3 and APUM24 have different structures in the 5th C-terminal Puf RNA-binding domain as ChPUM3 has a long random coil in this domain. Conclusions: Our results indicate that ChPUM2 has evolutionarily maintained functions in Arabidopsis, while ChPUM3 is not functional in Arabidopsis, most likely due to the long target ITS2 sequence of Arabidopsis and the distinct tertiary structure from Arabidopsis homologue APUM24.


2019 ◽  
Vol 74 (5) ◽  
pp. 966-981.e18 ◽  
Author(s):  
Inga Jarmoskaite ◽  
Sarah K. Denny ◽  
Pavanapuresan P. Vaidyanathan ◽  
Winston R. Becker ◽  
Johan O.L. Andreasson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document