kettle hole
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 9)

H-INDEX

14
(FIVE YEARS 2)

The Holocene ◽  
2021 ◽  
pp. 095968362110332
Author(s):  
Agnieszka Mroczkowska ◽  
Piotr Kittel ◽  
Katarzyna Marcisz ◽  
Ekaterina Dolbunova ◽  
Emilie Gauthier ◽  
...  

Peatlands are important records of past environmental changes. Based on a multiproxy analysis, the main factors influencing the evolution of a peatland can be divided into autogenic and allogenic. Among the important allogenic factors, apart from climate change, are deforestation and drainage, which are directly associated with human impact. Numerous consequences arise from these processes, the most important of which are physical and chemical denudation in the catchment and the related hydrological disturbances in the catchment and peatland. The present study determined how human activities and the past climatic variability mutually influenced the development of a small peatland ecosystem. The main goals of the study were: (1) to trace the local changes of the peatland history over the past 600 years, (2) to investigate their relationship with changes in regional hydroclimate patterns, and (3) to estimate the sensitivity of a small peatland to natural and human impact. Our reconstructions were based on a multiproxy analysis, including the analysis of pollen, macrofossils, Chironomidae, Cladocera, and testate amoebae. Our results showed that, depending on the changes in water level, the history of peatland can be divided into three phases as follows: 1/the phase of stable natural conditions, 2/phase of weak changes, and 3/phase of significant changes in the catchment. Additionally, to better understand the importance of the size of catchment and the size of the depositional basin in the evolution of the studied peatland ecosystem, we compared data from two peatlands – large and small – located close to each other. The results of our study indicated that “size matters,” and that larger peatlands are much more resilient and resistant to rapid changes occurring in the direct catchment due to human activities, whereas small peatlands are more sensitive and perfect as archives of environmental changes.


SOIL ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 549-564
Author(s):  
Florian Wilken ◽  
Michael Ketterer ◽  
Sylvia Koszinski ◽  
Michael Sommer ◽  
Peter Fiener

Abstract. Soil redistribution on arable land is a major threat for a sustainable use of soil resources. The majority of soil redistribution studies focus on water erosion, while wind and tillage erosion also induce pronounced redistribution of soil materials. Tillage erosion especially is understudied, as it does not lead to visible off-site damages. The analysis of on-site/in-field soil redistribution is mostly based on tracer studies, where radionuclide tracers (e.g. 137Cs, 239+240Pu) from nuclear weapon tests are commonly used to derive the erosion history over the past 50–60 years. Tracer studies allow us to determine soil redistribution patterns but integrate all types of soil redistribution processes and hence do not allow us to unravel the contribution of individual erosion processes. The aim of this study is to understand the contribution of water and tillage erosion leading to soil patterns found in a small hummocky ground moraine kettle hole catchment under intensive agricultural use. Therefore, 239+240Pu-derived soil redistribution patterns were analysed using an inverse modelling approach accounting for water and tillage erosion processes. The results of this analysis clearly point out that tillage erosion is the dominant process of soil redistribution in the study catchment, which also affects the hydrological and sedimentological connectivity between arable land and the kettle hole. A topographic change up to 17 cm (53 yr)−1 in the eroded parts of the catchment is not able to explain the current soil profile truncation that exceeds the 239+240Pu-derived topographic change substantially. Hence, tillage erosion already started before the onset of intense mechanisation since the 1960s. In general, the study stresses the urgent need to consider tillage erosion as a major soil degradation process that can be the dominant soil redistribution process in sloped arable landscapes.


2020 ◽  
Vol 558 ◽  
pp. 89-106
Author(s):  
Erica Corradini ◽  
Berit Valentin Eriksen ◽  
Morten Fischer Mortensen ◽  
Martin Krog Nielsen ◽  
Martin Thorwart ◽  
...  

2020 ◽  
Author(s):  
Agnieszka Mroczkowska ◽  
Piotr Kittel ◽  
Katarzyna Marcisz ◽  
Ekaterina Dolbunova ◽  
Emilie Gauthier ◽  
...  

<p>Peatlands are natural geoarchives which record within organic deposits a picture of the past environmental changes. Depending on the preserved proxy, we are able to reconstruct various aspects of palaeoenvironmental changes, e.g. using pollen (vegetation composition), plant macrofossils (local vegetation changes), testate amoebae and zoological remains (hydrological changes) or XRF scanning (geochemical changes). Here, we investigated changes in land use and climate of western Russia using a range of biotic and abiotic proxies. This part of Europe is characterized by a continental climate, which makes this region very sensitive to climate change, in particular to precipitation fluctuations. Furthermore, in the last two centuries strong human impact in that area has been noticed.  </p><p>The Serteya kettle hole mire (55°40'N 31°30'E) is situated in the Smolensk Oblast in Western Dvina Lakeland. Study site is located close to the range of plant communities belonging to the hemiboreal zone, making it an ideal position to trace the plant succession of Eastern Europe. Preliminary dating of the material proves that the average rate of biogenic deposits in the reservoir was approx. 1 m per 600 years. The majority of the European peatlands was in some sense transformed as a result of drainage and land use practices in their basins. Serteya kettle hole mire allowed us to accurately track how a small ecosystem responds to palaeoenvironmental changes. Preliminary results will show the major fluctuations of the mire hydrology accompanied by the changes in the land use in the region. Our goal is also to determine the resistance and resilience of peat bogs to disturbances.</p>


2019 ◽  
Vol 16 (16) ◽  
pp. 3207-3231 ◽  
Author(s):  
Camilo Rey-Sanchez ◽  
Gil Bohrer ◽  
Julie Slater ◽  
Yueh-Fen Li ◽  
Roger Grau-Andrés ◽  
...  

Abstract. Peatlands are a large source of methane (CH4) to the atmosphere, yet the uncertainty around the estimates of CH4 flux from peatlands is large. To better understand the spatial heterogeneity in temperate peatland CH4 emissions and their response to physical and biological drivers, we studied CH4 dynamics throughout the growing seasons of 2017 and 2018 in Flatiron Lake Bog, a kettle-hole peat bog in Ohio. The site is composed of six different hydro-biological zones: an open water zone, four concentric vegetation zones surrounding the open water, and a restored zone connected to the main bog by a narrow channel. At each of these locations, we monitored water level (WL), CH4 pore-water concentration at different peat depths, CH4 fluxes from the ground and from representative plant species using chambers, and microbial community composition with a focus here on known methanogens and methanotrophs. Integrated CH4 emissions for the growing season were estimated as 315.4±166 mgCH4m-2d-1 in 2017 and 362.3±687 mgCH4m-2d-1 in 2018. Median CH4 emission was highest in the open water, then it decreased and became more variable through the concentric vegetation zones as the WL dropped, with extreme emission hotspots observed in the tamarack mixed woodlands (Tamarack) and low emissions in the restored zone (18.8–30.3 mgCH4m-2d-1). Generally, CH4 flux from above-ground vegetation was negligible compared to ground flux (<0.4 %), although blueberry plants were a small CH4 sink. Pore-water CH4 concentrations varied significantly among zones, with the highest values in the Tamarack zone, close to saturation, and the lowest values in the restored zone. While the CH4 fluxes and pore-water concentrations were not correlated with methanogen relative abundance, the ratio of methanogens to methanotrophs in the upper portion of the peat was significantly correlated to CH4 transfer velocity (the CH4 flux divided by the difference in CH4 pore-water concentration between the top of the peat profile and the concentration in equilibrium with the atmosphere). Since ebullition and plant-mediated transport were not important sources of CH4 and the peat structure and porosity were similar across the different zones in the bog, we conclude that the differences in CH4 transfer velocities, and thus the flux, are driven by the ratio of methanogen to methanotroph relative abundance close to the surface. This study illustrates the importance of the interactions between water-level and microbial composition to better understand CH4 fluxes from bogs and wetlands in general.


2019 ◽  
Author(s):  
Camilo Rey-Sanchez ◽  
Gil Bohrer ◽  
Julie Slater ◽  
Yueh-Fen Li ◽  
Roger Grau-Andrés ◽  
...  

Abstract. Peatlands are a large source of methane (CH4) to the atmosphere, yet the uncertainty around the estimates of CH4 flux from peatlands is large. To better understand the spatial heterogeneity in temperate peatland CH4 emissions and their response to physical and biological drivers, we studied CH4 dynamics throughout the growing seasons of 2017 and 2018 in Flatiron Lake Bog, a kettle-hole peat bog in Ohio. The site is composed of six different hydro-biological zones: an open water zone, four concentric vegetation zones surrounding the open water, and a restored zone connected to the main bog by a narrow channel. At each of these locations, we monitored water level (WL), CH4 pore-water concentration at different peat depths, CH4 fluxes from the ground and from representative plant species using chambers, and microbial community composition with focus here on known methanogens and methanotrophs. Integrated CH4 emissions for the growing season were estimated as 315.4 ± 166 mg CH4 m−2 d−1 in 2017, and 362.3 ± 687 mg CH4 m−2 d−1 in 2018. Median CH4 emission was highest in the open water, then decreased and became more variable through the concentric vegetation zones as the WL dropped, with extreme emission hotspots observed in the Tamarack mixed woodlands (TMW), and low emissions in the restored zone (18.8–30.3 mg CH4 m−2 d−1). Generally, CH4 flux from above-ground vegetation was negligible compared to ground flux (


2019 ◽  
Vol 109 ◽  
pp. 00007
Author(s):  
Kostiantyn Bezruchko ◽  
Natalia Diachenko ◽  
Anna Diachenko

The article presents analysis results in the reconstruction of the tectonic conditions dynamics for the formation of local plicative deformations and rupturing under conditions of the research both the macrostructure and its local separation using the example of the southwestern area of Kalmius-Toretska kettle-hole in the Donetsk basin. Authors applied the scientific cognition method, representing a sequence of actions to establish structural links between variables and constant elements of the Investigational tectonic system, based on statistical and mathematical methods of analysis. The characteristics of the anticlinal structure formation in the studied area - fields of the “Butivska” mine were obtained. It was revealed that the initial horizontal attitude of rocks of the studied area was changed by a monoclinal attitude with a north-western dip and a north-east strike. Afterwards, under the conditions of tectonic near latitudinal compression and near meridional tension, anticlinal folding was formed. Then, under the influence of shear fields when the deformation mode was enhanced, a compression duplex was formed within which local echelon folding and fracture was formed - Oktiabrskyi fault #1.


2018 ◽  
Vol 90 (2) ◽  
pp. 199-208
Author(s):  
J. Forysiak ◽  
A. Majecka ◽  
L. Marks ◽  
D. Okupny

Sign in / Sign up

Export Citation Format

Share Document