seismic arrays
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 50)

H-INDEX

16
(FIVE YEARS 2)

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2062
Author(s):  
Zhenwei Lin ◽  
Chao Zhang ◽  
Jucan Dong ◽  
Jianliang Ou ◽  
Li Yu

The interaction between multiple loops and string cables complicates the dynamic response of triple square loops-string dome structures under seismic excitation. The internal connection between the multiple square loops-string cables and the grid beams was studies to provide a favorable reference for an anti-seismic structure. With a finite element model of the Fuzhou Strait Olympic Sports Center Gymnasium, established by SAP2000 software, the structural dynamic characteristic parameters were obtained first, and then this study adopted a time-history analysis method to study the internal force response of the cables and the roof grid beams of the multiple square loops-string dome (MSLSD) under three types of seismic array excitation. The influence of two factors, namely the seismic pulse and the near and far seismic fields, on the dynamic response of this structure was analyzed by three groups of different types of seismic excitation (PNF, NNF, PFF). As shown from the results, the first three-order vibration modes were torsional deformations caused by cables, the last five were mainly the overall roof plane vibration and antisymmetric vibration. Under the excitation of the three seismic arrays, the internal force responses of stay cables, square cables in the outer ring and the string cables were largest, while the maximum internal force response of the struts changed with the direction of seismic excitation. The largest internal force response of the roof grid beams occurred in local components such as BX3, BX7 and BY7, and the largest deformation of the beam nodes occurred in JX7, JX12 and JY4. In general, the seismic pulse and the near seismic field weakened the internal force response of the struts and cables but increased the internal force response and deformation of the dome beams, while the near and far seismic fields outweighed the seismic pulse. All the above provides an important reference for structural monitoring and seismic resistance.


Author(s):  
Zachary C. Eilon ◽  
James B. Gaherty ◽  
Lun Zhang ◽  
Joshua Russell ◽  
Sean McPeak ◽  
...  

Abstract The Pacific ocean-bottom seismometer (OBS) Research into Convecting Asthenosphere (ORCA) experiment deployed two 30-station seismic arrays between 2018 and 2020—a US contribution to the international PacificArray project. The “Young ORCA” array deployed on ∼40 Ma central Pacific seafloor had a ∼68% data recovery rate, whereas the “Old ORCA” array deployed on ∼120 Ma southwest Pacific seafloor had a ∼80% recovery rate. We detail here the seismic data quality, spectral characteristics, and engineering challenges of this experiment. We provide information to assist users of this dataset, including OBS orientations and tables of daily data quality for all channels. Preliminary analysis illustrates the utility of these data for surface- and body-wave seismic imaging.


Author(s):  
Ming-Hsuan Yen ◽  
Sebastian von Specht ◽  
Yen-Yu Lin ◽  
Fabrice Cotton ◽  
Kuo-Fong Ma

ABSTRACT Ground motion with strong-velocity pulses can cause significant damage to buildings and structures at certain periods; hence, knowing the period and velocity amplitude of such pulses is critical for earthquake structural engineering. However, the physical factors relating the scaling of pulse periods with magnitude are poorly understood. In this study, we investigate moderate but damaging earthquakes (Mw 6–7) and characterize ground-motion pulses using the method of Shahi and Baker (2014) while considering the potential static-offset effects. We confirm that the within-event variability of the pulses is large. The identified pulses in this study are mostly from strike-slip-like earthquakes. We further perform simulations using the frequency–wavenumber algorithm to investigate the causes of the variability of the pulse periods within and between events for moderate strike-slip earthquakes. We test the effect of fault dips, and the impact of the asperity locations and sizes. The simulations reveal that the asperity properties have a high impact on the pulse periods and amplitudes at nearby stations. Our results emphasize the importance of asperity characteristics, in addition to earthquake magnitudes for the occurrence and properties of pulses produced by the forward directivity effect. We finally quantify and discuss within- and between-event variabilities of pulse properties at short distances.


Author(s):  
Ziying Wang ◽  
Fenglin Niu ◽  
Jianping Huang ◽  
Zhenchun Li ◽  
Haichao Chen
Keyword(s):  

Author(s):  
Maria Mesimeri ◽  
Kristine L. Pankow ◽  
James Rutledge

ABSTRACT We propose a new frequency-domain-based algorithm for detecting small-magnitude seismic events using dense surface seismic arrays. Our proposed method takes advantage of the high energy carried by S waves, and approximate known source locations, which are used to rotate the horizontal components to obtain the maximum amplitude. By surrounding the known source area with surface geophones, we achieve a favorable geometry for locating the detected seismic events with the backprojection method. To test our new detection method, we used a dense circular array, consisting of 151 5 Hz three-component geophones, over a 5 km aperture that was in operation at the Utah Frontier Observatory for Research in Geothermal Energy (FORGE) in southcentral Utah. We apply the new detection method during a small-scale test injection phase at FORGE, and during an aftershock sequence of an Mw 4.1 earthquake located ∼30  km north of the geophone array, within the Black Rock volcanic field. We are able to detect and locate microseismic events (Mw<0) during injections, despite the high level of anthropogenic activity, and several aftershocks that are missing from the regional catalog. By comparing our method with known algorithms that operate both in the time and frequency domain, we show that our proposed method performs better in the case of the FORGE injection monitoring, and equally well for the off-array aftershock sequence. Our new method has the potential to improve microseismic event detections even in extremely noisy environments, and the proposed location scheme serves as a direct discriminant between true and false detections.


2021 ◽  
Author(s):  
Carola Leva ◽  
Georg Rümpker ◽  
Ingo Wölbern

Abstract. Seismic arrays provide tools for the localization of events without clear phases or events outside of the network, where the station coverage prohibits classical localization techniques. Beamforming allows the determination of the direction (backazimuth) and the horizontal (apparent) velocity of an incoming wavefront. Here we combine multiple arrays to retrieve event epicenters from the area of intersecting beams without the need to specify a velocity model. The analysis is performed in the time-domain, which allows to select a relatively narrow time window around the phase of interest while preserving frequency bandwidth. This technique is applied to earthquakes and hybrid events in the region of Fogo and Brava, two islands of the southern chain of the Cape Verde archipelago. The results show that the earthquakes mainly originate near Brava whereas the hybrid events are located on Fogo. By multiple-event beam-stacking we are able to further constrain the locations of the hybrid events in the north-western part of the collapse scar of Fogo. In previous studies, these events were attributed to shallow hydrothermal processes. However, we obtain relatively high apparent velocities at the arrays, pointing to either deeper sources or to complex ray paths. For a better understanding of possible errors of the multi-array analysis, we also compare slowness values obtained from the array analysis with those derived from earthquake locations from classical (local network) localizations. In general, the results agree well, however, the arrays also show some aberrations that can be quantified for certain event locations.


Author(s):  
Hao Rao ◽  
Yinhe Luo ◽  
Kaifeng Zhao ◽  
Yingjie Yang

Summary Correlation of the coda of Empirical Green's functions from ambient noise can be used to reconstruct Empirical Green's function between two seismic stations deployed different periods of time. However, such method requires a number of source stations deployed in the area surrounding a pair of asynchronous stations, which limit its applicability in cases where there are not so many available source stations. Here, we propose an alternative method, called two-station C2 method, which uses one single station as a virtual source to retrieve surface wave phase velocities between a pair of asynchronous stations. Using ambient noise data from USArray as an example, we obtain the interstation C2 functions using our C2 method and the traditional cross-correlation functions (C1 functions). We compare the differences between the C1 and C2 functions in waveforms, dispersion measurements, and phase velocity maps. Our results show that our C2 method can obtain reliable interstation phase velocity measurements, which can be used in tomography to obtain reliable phase velocity maps. Our method can significantly improve ray path coverage from asynchronous seismic arrays and enhance the resolution in ambient noise tomography for areas between asynchronous seismic arrays.


Sign in / Sign up

Export Citation Format

Share Document