local conformation
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 13)

H-INDEX

15
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Xinquan Wang ◽  
Jun Lan ◽  
Xinheng He ◽  
Yifei Ren ◽  
Ziyi Wang ◽  
...  

Abstract Since SARS-CoV-2 Omicron variant (B.1.1.529) was reported in November 2021, it has quickly spread to many countries and outcompeted the globally dominant Delta variant in several countries. The Omicron variant contains the largest number of mutations to date, with 32 mutations located at spike (S) glycoprotein, which raised great concern for its enhanced viral fitness and immune escape[1-4]. In this study, we reported the crystal structure of the receptor binding domain (RBD) of Omicron variant S glycoprotein bound to human ACE2 at a resolution of 2.6 Å. Structural comparison, molecular dynamics simulation and binding free energy calculation collectively identified four key mutations (S477N, G496S, Q498R and N501Y) for the enhanced binding of ACE2 by the Omicron RBD compared to the WT RBD. Representative states of the WT and Omicron RBD-ACE2 systems were identified by Markov State Model, which provides a dynamic explanation for the enhanced binding of Omicron RBD. The effects of the mutations in the RBD for antibody recognition were analyzed, especially for the S371L/S373P/S375F substitutions significantly changing the local conformation of the residing loop to deactivate several class IV neutralizing antibodies.


2022 ◽  
Author(s):  
xinquan wang ◽  
Tong Wang ◽  
Jiwan Ge ◽  
Linqi Zhang ◽  
Jun Lan ◽  
...  

Since SARS-CoV-2 Omicron variant (B.1.1.529) was reported in November 2021, it has quickly spread to many countries and outcompeted the globally dominant Delta variant in several countries. The Omicron variant contains the largest number of mutations to date, with 32 mutations located at spike (S) glycoprotein, which raised great concern for its enhanced viral fitness and immune escape[1-4]. In this study, we reported the crystal structure of the receptor binding domain (RBD) of Omicron variant S glycoprotein bound to human ACE2 at a resolution of 2.6 angstrom. Structural comparison, molecular dynamics simulation and binding free energy calculation collectively identified four key mutations (S477N, G496S, Q498R and N501Y) for the enhanced binding of ACE2 by the Omicron RBD compared to the WT RBD. Representative states of the WT and Omicron RBD-ACE2 systems were identified by Markov State Model, which provides a dynamic explanation for the enhanced binding of Omicron RBD. The effects of the mutations in the RBD for antibody recognition were analyzed, especially for the S371L/S373P/S375F substitutions significantly changing the local conformation of the residing loop to deactivate several class IV neutralizing antibodies.


2021 ◽  
Author(s):  
Zhen Cui ◽  
Pan Liu ◽  
Nan Wang ◽  
Lei Wang ◽  
Kaiyue Fan ◽  
...  

The SARS-CoV-2 Omicron with increased fitness is spreading rapidly worldwide. Analysis of cryo-EM structures of the Spike (S) from Omicron reveals amino acid substitutions forging new interactions that stably maintain an active conformation for receptor recognition. The relatively more compact domain organization confers improved stability and enhances attachment but compromises the efficiency of viral fusion step. Alterations in local conformation, charge and hydrophobic microenvironments underpin the modulation of the epitopes such that they are not recognized by most NTD- and RBD-antibodies, facilitating viral immune escape. Apart from already existing mutations, we have identified three new immune escape sites: 1) Q493R, 2) G446S and 3) S371L/S373P/S375F that confers greater resistance to five of the six classes of RBD-antibodies. Structure of the Omicron S bound with human ACE2, together with analysis of sequence conservation in ACE2 binding region of 25 sarbecovirus members as well as heatmaps of the immunogenic sites and their corresponding mutational frequencies sheds light on conserved and structurally restrained regions that can be used for the development of broad-spectrum vaccines and therapeutics.


2021 ◽  
Author(s):  
Kang Wang ◽  
Zijing Jia ◽  
Linlin Bao ◽  
Lei Wang ◽  
Lei Cao ◽  
...  

Omicron, the most heavily mutated SARS-CoV-2 variant so far, is highly resistant to neutralizing antibodies, raising unprecedented concerns about the effectiveness of antibody therapies and vaccines. We examined whether sera from individuals who received two or three doses of inactivated vaccine, could neutralize authentic Omicron. The seroconversion rates of neutralizing antibodies were 3.3% (2/60) and 95% (57/60) for 2- and 3-dose vaccinees, respectively. For three-dose recipients, the geometric mean neutralization antibody titer (GMT) of Omicron was 15, 16.5-fold lower than that of the ancestral virus (254). We isolated 323 human monoclonal antibodies derived from memory B cells in 3-dose vaccinees, half of which recognize the receptor binding domain (RBD) and show that a subset of them (24/163) neutralize all SARS-CoV-2 variants of concern (VOCs), including Omicron, potently. Therapeutic treatments with representative broadly neutralizing mAbs individually or antibody cocktails were highly protective against SARS-CoV-2 Beta infection in mice. Atomic structures of the Omicron S in complex with three types of all five VOC-reactive antibodies defined the binding and neutralizing determinants and revealed a key antibody escape site, G446S, that confers greater resistance to one major class of antibodies bound at the right shoulder of RBD through altering local conformation at the binding interface. Our results rationalize the use of 3-dose immunization regimens and suggest that the fundamental epitopes revealed by these broadly ultrapotent antibodies are a rational target for a universal sarbecovirus vaccine.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Camille Michiko Obayashi ◽  
Yoko Shinohara ◽  
Takao Masuda ◽  
Gota Kawai

AbstractThe 5′-UTR of HIV-1 genomic RNA is known to form specific structures and has important functions. There are three 5′-terminal sequences, G1, G2 and G3, with different localizations in the cell and virion particles as well as different efficiencies in translation and reverse transcription reactions. In the present study, the structural characteristics of the joint region between the TAR and PolyA stems was analysed, and it was found that small differences in the 5′-terminus affect the conformational characteristics of the stem-loop structures. In the G1 form, the two stems form a coaxial stem, whereas in the G2 and G3 forms, the two stems are structurally independent of each other. In the case of the G1 form, the 3′-flanking nucleotides of the PolyA stem are included in the stable coaxial stem structure, which may affect the rest of the 5′-UTR structure. This result demonstrates that the local conformation of this functionally key region has an important role in the function of the 5′-UTR.


2021 ◽  
Author(s):  
Koya Sakuma

SummaryABEGO is a coarse-grained representation for polypeptide backbone dihedral angles. The Ramachandran map is divided into four segments denoted as A, B, E, and G to represent the local conformation of polypeptide chains in the character strings. Although the ABEGO representation is widely used in structural informatics and protein design, it cannot capture minor differences in backbone dihedral angles, which potentially leads to ambiguity between two structurally distinct fragments. Here, we show a nontrivial example of two local motifs that could not be distinguished by their ABEGO representations. We found that two well-known local motifs αα-hairpins and αα-corners are both represented as α-GBB-α and thus indistinguishable in the ABEGO representation, although they show distinct arrangements of the flanking α-helices. We also found that α-GBB-α motifs caused a loss of efficiency in the ABEGO-based fragment-assembly simulations for protein backbone design. Nevertheless, we designed amino-acid sequences that were predicted to fold into the target topologies that contained these α-GBB-α motifs. Our finding that certain local motifs bottleneck the ABEGO-based fragment-assembly simulations for construction of backbone structures suggests that finer representations of backbone torsion angles are required for efficiently generating diverse topologies containing such indistinguishable local motifs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fa-Hui Sun ◽  
Peng Zhao ◽  
Nan Zhang ◽  
Lu-Lu Kong ◽  
Catherine C. L. Wong ◽  
...  

AbstractUpon binding to DNA breaks, poly(ADP-ribose) polymerase 1 (PARP1) ADP-ribosylates itself and other factors to initiate DNA repair. Serine is the major residue for ADP-ribosylation upon DNA damage, which strictly depends on HPF1. Here, we report the crystal structures of human HPF1/PARP1-CAT ΔHD complex at 1.98 Å resolution, and mouse and human HPF1 at 1.71 Å and 1.57 Å resolution, respectively. Our structures and mutagenesis data confirm that the structural insights obtained in a recent HPF1/PARP2 study by Suskiewicz et al. apply to PARP1. Moreover, we quantitatively characterize the key residues necessary for HPF1/PARP1 binding. Our data show that through salt-bridging to Glu284/Asp286, Arg239 positions Glu284 to catalyze serine ADP-ribosylation, maintains the local conformation of HPF1 to limit PARP1 automodification, and facilitates HPF1/PARP1 binding by neutralizing the negative charge of Glu284. These findings, along with the high-resolution structural data, may facilitate drug discovery targeting PARP1.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yukari Oda ◽  
Daisuke Kawaguchi ◽  
Yuma Morimitsu ◽  
Satoru Yamamoto ◽  
Keiji Tanaka

AbstractA better understanding of the structure of polymers at solid interfaces is crucial for designing various polymer nano-composite materials from structural materials to nanomaterials for use in industry. To this end, the first step is to obtain information on how synthetic polymer chains adsorb onto a solid surface. We closely followed the trajectory of a single polymer chain on the surface as a function of temperature using atomic force microscopy. Combining the results with a full-atomistic molecular dynamics simulation revealed that the chain became more rigid on the way to reaching a pseudo-equilibrium state, accompanied by a change in its local conformation from mainly loops to trains. This information will be useful for regulating the physical properties of polymers at the interface.


2020 ◽  
Author(s):  
Cai-Hong Yun ◽  
Fa-Hui Sun ◽  
Peng Zhao ◽  
Nan Zhang ◽  
Lu-Lu Kong ◽  
...  

Abstract Upon binding to DNA breaks, poly(ADP-ribose) polymerase 1 (PARP1) ADP-ribosylates itself and other factors to initiate DNA repair. Serine is the major residue for ADP-ribosylation upon DNA damage, which strictly depends on HPF1. Here we report the crystal structures of human HPF1/PARP1-CAT ΔHD complex at 1.98 Å resolution and mouse and human HPF1 at 1.71 Å and 1.57 Å resolution, respectively. These structures and mutagenesis data confirm that the structural insights obtained in the HPF1/PARP2 study apply to PARP1. Moreover, we quantitatively characterize the key residues for HPF1/PARP1 binding. This information clarifies the confusion regarding HPF1/PARP1 assembly and can direct following functional studies. Our data show that through salt-bridging to Glu284/Asp286, Arg239 positions Glu284 for catalyzing serine ADP-ribosylation, maintains the local conformation of HPF1 to limit PARP1 automodification and facilitates HPF1/PARP1 binding through neutralizing the negative charge of Glu284. These findings and the high-resolution structural data may facilitate drug discovery targeting PARP1.


Sign in / Sign up

Export Citation Format

Share Document