diseased skin
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 8)

H-INDEX

24
(FIVE YEARS 2)

2022 ◽  
Vol 12 ◽  
Author(s):  
Oktawia Osiecka ◽  
Joanna Skrzeczynska-Moncznik ◽  
Agnieszka Morytko ◽  
Angelika Mazur ◽  
Pawel Majewski ◽  
...  

Eosinophils and secretory leukocyte protease inhibitor (SLPI) are both associated with Th2 immune responses and allergic diseases, but whether the fact that they are both implicated in these conditions is pathophysiologically related remains unknown. Here we demonstrate that human eosinophils derived from normal individuals are one of the major sources of SLPI among circulating leukocytes. SLPI was found to be stored in the crystalline core of eosinophil granules, and its dislocation/rearrangement in the crystalline core likely resulted in changes in immunostaining for SLPI in these cells. High levels of SLPI were also detected in blood eosinophils from patients with allergy-associated diseases marked by eosinophilia. These include individuals with eosinophilic granulomatosis with polyangiitis (EGPA) and atopic dermatitis (AD), who were also found to have elevated SLPI levels in their plasma. In addition to the circulating eosinophils, diseased skin of AD patients also contained SLPI-positive eosinophils. Exogenous, recombinant SLPI increased numbers of migratory eosinophils and supported their chemotactic response to CCL11, one of the key chemokines that regulate eosinophil migratory cues. Together, these findings suggest a role for SLPI in controlling Th2 pathophysiologic processes via its impact on and/or from eosinophils.


Author(s):  
Ghazi Khalfallah ◽  
Rita Gartzen ◽  
Martin Möller ◽  
Elisabeth Heine ◽  
Rudolf Lütticken

AbstractIn this study, the potential of certain lactic acid bacteria—classified as probiotics and known to be antimicrobially active against pathogens or food-poisoning microorganisms—was evaluated with respect to their activity against bacterial skin pathogens. The aim of the study was to develop a plaster/bandage for the application of inhibitory substances produced by these probiotics when applied to diseased skin. For this purpose, two Streptococcus salivarius strains and one Lactobacillus plantarum were tested for production of antimicrobials (bacteriocin-like substances) active against Gram-positive and Gram-negative pathogens using established methods. A newly designed membrane test ensured that the probiotics produce antimicrobials diffusible through membranes. Target organisms used were Cutibacterium acnes, Staphylococcus aureus, and Pseudomonas aeruginosa. Moreover, the L. plantarum 8P-A3 strain was tested against additional bacteria involved in skin disorders. The Lactobacillales used were active against all potential skin pathogens tested. These probiotics could be enclosed between polymer membranes—one tight, the other permeable for their products, preserved by vacuum drying, and reactivated after at least three months storage. Importantly, the reactivated pads containing the probiotics demonstrated antibacterial activity on agar plates against all pathogens tested. This suggests that the probiotic containing pads may be topically applied for the treatment of skin disorders without the need for a regular antibiotic treatment or as an adjunctive therapy.


2020 ◽  
Vol 9 (11) ◽  
pp. 3448
Author(s):  
Loukman Omarjee ◽  
Pierre-Jean Mention ◽  
Anne Janin ◽  
Gilles Kauffenstein ◽  
Estelle Le Pabic ◽  
...  

Background: Pseudoxanthoma elasticum (PXE) is an inherited metabolic disease characterized by elastic fiber fragmentation and ectopic calcification. There is growing evidence that vascular calcification is associated with inflammatory status and is enhanced by inflammatory cytokines. Since PXE has never been considered as an inflammatory condition, no incidence of chronic inflammation leading to calcification in PXE has been reported and should be investigated. In atherosclerosis and aortic stenosis, positron emission tomography combined with computed tomographic (PET-CT) imaging has demonstrated a correlation between inflammation and calcification. The purpose of this study was to assess skin/artery inflammation and calcification in PXE patients. Methods: 18F-FluroDeoxyGlucose (18F-FDG) and 18F-Sodium Fluoride (18F-NaF) PET-CT, CT-imaging and Pulse wave velocity (PWV) were used to determine skin/vascular inflammation, tissue calcification, arterial calcium score (CS) and stiffness, respectively. In addition, inorganic pyrophosphate, high-sensitive C-reactive protein and cytokines plasma levels were monitored. Results: In 23 PXE patients, assessment of inflammation revealed significant 18F-FDG uptake in diseased skin areas contrary to normal regions, and exclusively in the proximal aorta contrary to the popliteal arteries. There was no correlation between 18F-FDG uptake and PWV in the aortic wall. Assessment of calcification demonstrated significant 18F-NaF uptake in diseased skin regions and in the proximal aorta and femoral arteries. 18F-NaF wall uptake correlated with CS in the femoral arteries, and aortic wall PWV. Multivariate analysis indicated that aortic wall 18F-NaF uptake is associated with diastolic blood pressure. There was no significant correlation between 18F-FDG and 18F-NaF uptake in any of the artery walls. Conclusion: In the present cross-sectional study, inflammation and calcification were not correlated. PXE would appear to more closely resemble a chronic disease model of ectopic calcification than an inflammatory condition. To assess early ectopic calcification in PXE patients, 18F-NaF-PET-CT may be more relevant than CT imaging. It potentially constitutes a biomarker for disease-modifying anti-calcifying drug assessment in PXE.


Cytokine ◽  
2020 ◽  
Vol 132 ◽  
pp. 154605 ◽  
Author(s):  
Grace A. Hile ◽  
Johann E. Gudjonsson ◽  
J. Michelle Kahlenberg
Keyword(s):  

Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1130 ◽  
Author(s):  
Katarzyna Bocheńska ◽  
Magdalena Gabig-Cimińska

Sphingolipids (SLs), which have structural and biological responsibilities in the human epidermis, are importantly involved in the maintenance of the skin barrier and regulate cellular processes, such as the proliferation, differentiation and apoptosis of keratinocytes (KCs). As many dermatologic diseases, including psoriasis (PsO), intricately characterized by perturbations in these cellular processes, are associated with altered composition and unbalanced metabolism of epidermal SLs, more education to precisely determine the role of SLs, especially in the pathogenesis of skin disorders, is needed. PsO is caused by a complex interplay between skin barrier disruption, immune dysregulation, host genetics and environmental triggers. The contribution of particular cellular compartments and organelles in SL metabolism, a process related to dysfunction of lysosomes in PsO, seems to have a significant impact on lysosomal signalling linked to a modulation of the immune-mediated inflammation accompanying this dermatosis and is not fully understood. It is also worth noting that a prominent skin disorder, such as PsO, has diminished levels of the main epidermal SL ceramide (Cer), reflecting altered SL metabolism, that may contribute not only to pathogenesis but also to disease severity and/or progression. This review provides a brief synopsis of the implications of SLs in PsO, aims to elucidate the roles of these molecules in complex cellular processes deregulated in diseased skin tissue and highlights the need for increased research in the field. The significance of SLs as structural and signalling molecules and their actions in inflammation, in which these components are factors responsible for vascular endothelium abnormalities in the development of PsO, are discussed.


2019 ◽  
Vol 61 (2) ◽  
pp. 219-228 ◽  
Author(s):  
Lukáš Opálka ◽  
Andrej Kováčik ◽  
Petra Pullmannová ◽  
Jaroslav Maixner ◽  
Kateřina Vávrová

Ceramides (Cers) with ultralong (∼32-carbon) chains and ω-esterified linoleic acid, composing a subclass called omega-O-acylceramides (acylCers), are indispensable components of the skin barrier. Normal barriers typically contain acylCer concentrations of ∼10 mol%; diminished concentrations, along with altered or missing long periodicity lamellar phase (LPP), and increased permeability accompany an array of skin disorders, including atopic dermatitis, psoriasis, and ichthyoses. We developed model membranes to investigate the effects of the acylCer structure and concentration on skin lipid organization and permeability. The model membrane systems contained six to nine Cer subclasses as well as fatty acids, cholesterol, and cholesterol sulfate; acylCer content—namely, acylCers containing sphingosine (Cer EOS), dihydrosphingosine (Cer EOdS), and phytosphingosine (Cer EOP) ranged from zero to 30 mol%. Systems with normal physiologic concentrations of acylCer mixture mimicked the permeability and nanostructure of human skin lipids (with regard to LPP, chain order, and lateral packing). The models also showed that the sphingoid base in acylCer significantly affects the membrane architecture and permeability and that Cer EOP, notably, is a weaker barrier component than Cer EOS and Cer EOdS. Membranes with diminished or missing acylCers displayed some of the hallmarks of diseased skin lipid barriers (i.e., lack of LPP, less ordered lipids, less orthorhombic chain packing, and increased permeability). These results could inform the rational design of new and improved strategies for the barrier-targeted treatment of skin diseases.


2019 ◽  
Vol 32 (2) ◽  
pp. 94-100 ◽  
Author(s):  
Hina Hussain ◽  
Jörg Ziegler ◽  
Gerd Hause ◽  
Johannes Wohlrab ◽  
Reinhard H.H. Neubert

Sign in / Sign up

Export Citation Format

Share Document