crystalline core
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 29)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Vol 12 ◽  
Author(s):  
Oktawia Osiecka ◽  
Joanna Skrzeczynska-Moncznik ◽  
Agnieszka Morytko ◽  
Angelika Mazur ◽  
Pawel Majewski ◽  
...  

Eosinophils and secretory leukocyte protease inhibitor (SLPI) are both associated with Th2 immune responses and allergic diseases, but whether the fact that they are both implicated in these conditions is pathophysiologically related remains unknown. Here we demonstrate that human eosinophils derived from normal individuals are one of the major sources of SLPI among circulating leukocytes. SLPI was found to be stored in the crystalline core of eosinophil granules, and its dislocation/rearrangement in the crystalline core likely resulted in changes in immunostaining for SLPI in these cells. High levels of SLPI were also detected in blood eosinophils from patients with allergy-associated diseases marked by eosinophilia. These include individuals with eosinophilic granulomatosis with polyangiitis (EGPA) and atopic dermatitis (AD), who were also found to have elevated SLPI levels in their plasma. In addition to the circulating eosinophils, diseased skin of AD patients also contained SLPI-positive eosinophils. Exogenous, recombinant SLPI increased numbers of migratory eosinophils and supported their chemotactic response to CCL11, one of the key chemokines that regulate eosinophil migratory cues. Together, these findings suggest a role for SLPI in controlling Th2 pathophysiologic processes via its impact on and/or from eosinophils.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ursula J. Gibson ◽  
Lei Wei ◽  
John Ballato

AbstractNovel core fibers have a wide range of applications in optics, as sources, detectors and nonlinear response media. Optoelectronic, and even electronic device applications are now possible, due to the introduction of methods for drawing fibres with a semiconductor core. This review examines progress in the development of glass-clad, crystalline core fibres, with an emphasis on semiconducting cores. The underlying materials science and the importance of post-processing techniques for recrystallization and purification are examined, with achievements and future prospects tied to the phase diagrams of the core materials.


2021 ◽  
Author(s):  
Tanîa M. Shiga ◽  
Haibing Yang ◽  
Bryan W. Penning ◽  
Anna T. Olek ◽  
Maureen C. McCann ◽  
...  

Abstract A modified TEMPO-catalyzed oxidation of the solvent-exposed glucosyl units of cellulose to uronic acids, followed by carboxyl reduction with NaBD 4 to 6-deutero- and 6,6-dideuteroglucosyl units, provided a robust method for determining relative proportions of disordered amorphous, ordered surface chains, and anhydrous core-crystalline residues of cellulose microfibrils inaccessible to TEMPO. Both glucosyl residues of cellobiose units, digested from amorphous chains of cellulose with a combination of cellulase and cellobiohydrolase, were deuterated, whereas those from anhydrous chains were undeuterated. By contrast, solvent-exposed and anhydrous residues alternate in surface chains, so only one of the two residues of cellobiosyl units was labeled. Although current estimates indicate that each cellulose microfibril comprises only 18 to 24 (1 , 4)- b eta-D-glucan chains, we show here that microfibrils of walls of Arabidopsis leaves and maize coleoptiles, and those of secondary wall cellulose of cotton fibers and poplar wood, bundle into much larger macrofibrils, with 67 to 86% of the glucan chains in the anhydrous domain. These results indicate extensive bundling of microfibrils into macrofibrils occurs during both primary and secondary wall formation. We discuss how, beyond lignin, the degree of bundling into macrofibrils contributes an additional recalcitrance factor to lignocellulosic biomass for enzymatic or chemical catalytic conversion to biofuel substrates.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 475
Author(s):  
Antonio Rinaldi ◽  
Marialilia Pea ◽  
Andrea Notargiacomo ◽  
Eloisa Ferrone ◽  
Sebastiano Garroni ◽  
...  

In this work, we propose the synthesis of ZnO nanostructures through the thermal oxidation of ball-milled powders with the introduction of Mg and Sn doping species at the preliminary step of milling. We investigate the advantages and challenges of this two steps process for the production and fabrication of highly crystalline ZnO nanowires. This simple method allows us to fabricate ZnO nanowires with a higher quality core crystal at a much lower temperature and for a shorter processing time than the state-of-the-art, and decorated with by ZnO2 nanoparticles as determined via TEM analysis. The main findings will show that the crystalline core of the nanowires is of hexagonal ZnO while the nanoparticles on the surface are ZnO2 cubic type. Generally, the method proves to be suitable for applications that require a high surface-to-volume ratio, for example, catalysis phenomena, in which the presence of zinc oxides species can play an important role.


2021 ◽  
Author(s):  
Yuhan Wei ◽  
Fujun Liu ◽  
Min Li ◽  
Zhibo Li ◽  
Jing Sun

The balance between the crystallization and solubility of the block copolymer dominates the nanostructures.


Sign in / Sign up

Export Citation Format

Share Document