intrinsically disordered peptide
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Guy Jacoby ◽  
Merav Segal Asher ◽  
Tamara Ehm ◽  
Inbal Abutbul Ionita ◽  
Hila Shinar ◽  
...  

2021 ◽  
Author(s):  
Guy Jacoby ◽  
Merav Segal Asher ◽  
Tamara Ehm ◽  
Inbal Abutbul-Ionita ◽  
Hila Shinar ◽  
...  

Amphiphilic molecules and their self-assembled structures have long been the target of extensive research due to their potential applications in fields ranging from materials design to biomedical and cosmetic applications. Increasing demands for functional complexity have been met with challenges in biochemical engineering, driving researchers to innovate in the design of new amphiphiles. An emerging class of molecules, namely, peptide amphiphiles, combines key advantages and circumvents some of the disadvantages of conventional phospholipids and block-copolymers. Herein, we present new peptide amphiphiles comprised of an intrinsically disordered peptide conjugated to two variants of hydrophobic dendritic domains. These molecules termed intrinsically disordered peptide amphiphiles (IDPA), exhibit a sharp pH-induced micellar phase-transition from low-dispersity spheres to extremely elongated worm-like micelles. We present an experimental characterization of the transition and propose a theoretical model to describe the pH-response. We also present the potential of the shape transition to serve as a mechanism for the design of a cargo hold-and-release application. Such amphiphilic systems demonstrate the power of tailoring the interactions between disordered peptides for various stimuli-responsive biomedical applications.


2021 ◽  
Author(s):  
Guy Jacoby ◽  
Merav Segal Asher ◽  
Tamara Ehm ◽  
Inbal Abutbul-Ionita ◽  
Hila Shinar ◽  
...  

Amphiphilic molecules and their self-assembled structures have long been the target of extensive research due to their potential applications in fields ranging from materials design to biomedical and cosmetic applications. Increasing demands for functional complexity have been met with challenges in biochemical engineering, driving researchers to innovate in the design of new amphiphiles. An emerging class of molecules, namely, peptide amphiphiles, combines key advantages and circumvents some of the disadvantages of conventional phospholipids and block-copolymers. Herein, we present new peptide amphiphiles comprised of an intrinsically disordered peptide conjugated to two variants of hydrophobic dendritic domains. These molecules termed intrinsically disordered peptide amphiphiles (IDPA), exhibit a sharp pH-induced micellar phase-transition from low-dispersity spheres to extremely elongated worm-like micelles. We present an experimental characterization of the transition and propose a theoretical model to describe the pH-response. We also present the potential of the shape transition to serve as a mechanism for the design of a cargo hold-and-release application. Such amphiphilic systems demonstrate the power of tailoring the interactions between disordered peptides for various stimuli-responsive biomedical applications.


2021 ◽  
Author(s):  
Dean N. Edun ◽  
Meredith R. Flanagan ◽  
Arnaldo L. Serrano

Two-dimensional infrared spectroscopy reveals folding of an intrinsically disordered peptide when sequestered into a model “membrane-less” organelle.


Open Biology ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 180058 ◽  
Author(s):  
Donald E. Olins ◽  
Ada L. Olins

‘Epichromatin’, the surface of chromatin beneath the interphase nuclear envelope (NE) or at the surface of mitotic chromosomes, was discovered by immunostaining with a specific bivalent mouse monoclonal anti-nucleosome antibody (mAb PL2-6). ‘Chromomeres’, punctate chromatin particles approximately 200–300 nm in diameter, identified throughout the interphase chromatin and along mitotic chromosomes, were observed by immunostaining with the monovalent papain-derived Fab fragments of bivalent PL2-6. The specific target for PL2-6 appears to include the nucleosome acidic patch. Thus, within the epichromatin and chromomeric regions, this epitope is ‘exposed’. Considering that histones possess unstructured ‘tails’ (i.e. intrinsically disordered peptide regions, IDPR), our perception of these chromatin regions becomes more ‘fuzzy’ (less defined). We suggest that epichromatin cationic tails facilitate interactions with anionic components of NE membranes. We also suggest that the unstructured histone tails (especially, histone H1 tails), with their presumed promiscuous binding, establish multivalent binding that stabilizes each chromomere as a unit of chromatin higher order structure. We propose an ‘unstructured stability’ hypothesis, which postulates that the stability of epichromatin and chromomeres (as well as other nuclear chromatin structures) is a consequence of the collective contributions of numerous weak histone IDPR binding interactions arising from the multivalent nucleosome, analogous to antibody avidity.


Sign in / Sign up

Export Citation Format

Share Document