geodetic technique
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 3)

H-INDEX

1
(FIVE YEARS 1)

Author(s):  
Rachel Lackey

White Glacier is located on Axel Heiberg Island in Nunavut, Canada, and has had its mass balance actively monitored since 1960. Due to COVID-19 travel restrictions it not possible for researchers to travel to White Glacier and perform the measurements required. This results in gaps in data required to determine the mass balance for 2018-2020. In this study we aim to collect and process laser altimeter data to be interpolated to calculate an estimate of the Mass Balance of White Glacier. This study will be completed using a geodetic technique that utilizes the Ice Cloud and Elevation-2 (ICESat-2) satellite altimetry data. ICESat-2 is carrying ATLAS which is an Advanced Topographic Laser Altimeter that is equipped with six laser beams divided into three pairs that measure lidar altimetry to derive surface height. The longitude, latitude, datetime, and land ice height values were extracted over the Expedition fjord region using MATLAB. The land ice tracks were brought into ArcGIS for analysis, three repeat tracks in the Expedition Fjord region were selected for analysis to determine the difference in elevation between the premelt seasons of 2019 and 2020 as well as one track comparing the premelt and melt seasons of 2019. These elevation differences will be interpolated as accumulation or ablation dependant on the location on the glacier and used to estimate mass balance.


Polar Science ◽  
2019 ◽  
Vol 19 ◽  
pp. 24-39 ◽  
Author(s):  
Anant Kumar ◽  
H.S. Negi ◽  
Kamal Kumar ◽  
Chander Shekhar ◽  
Neha Kanda

2018 ◽  
Vol 35 (1) ◽  
pp. 47-63 ◽  
Author(s):  
Anant Kumar ◽  
Harendra Singh Negi ◽  
Kamal Kumar ◽  
Neha Kanda ◽  
Kamal Kant Singh ◽  
...  

2009 ◽  
Vol 5 (H15) ◽  
pp. 216-216
Author(s):  
Harald Schuh ◽  
Johannes Boehm ◽  
Sigrid Englich ◽  
Axel Nothnagel

AbstractVery Long Baseline Interferometry (VLBI) is the only space geodetic technique which is capable of estimating the Earth's phase of rotation, expressed as Universal Time UT1, over time scales of a few days or longer. Satellite-observing techniques like the Global Navigation Satellite Systems (GNSS) are suffering from the fact that Earth rotation is indistinguishable from a rotation of the satellite orbit nodes, which requires the imposition of special procedures to extract UT1 or length of day information. Whereas 24 hour VLBI network sessions are carried out at about three days per week, the hour-long one-baseline intensive sessions (‘Intensives’) are observed from Monday to Friday (INT1) on the baseline Wettzell (Germany) to Kokee Park (Hawaii, U.S.A.), and from Saturday to Sunday on the baseline Tsukuba (Japan) to Wettzell (INT2). Additionally, INT3 sessions are carried out on Mondays between Wettzell, Tsukuba, and Ny-Alesund (Norway), and ultra-rapid e-Intensives between E! urope and Japan also include the baseline Metsähovi (Finland) to Kashima (Japan). The Intensives have been set up to determine daily estimates of UT1 and to be used for UT1 predictions. Because of the short duration and the limited number of stations the observations can nowadays be e-transferred to the correlators, or to a node close to the correlator, and the estimates of UT1 are available shortly after the last observation thus allowing the results to be used for prediction purposes.


2006 ◽  
Vol 59 (2) ◽  
pp. 213-220
Author(s):  
Ahmed El-Rabbany

The development of a seamless vertical reference surface is accompanied by a number of challenges pertinent to the availability, volume and uncertainty of bathymetric and topographic data. Data uncertainty, which is by far the most difficult to deal with, is attributed to various sources of errors including those of geodetic and hydrographic origin. The uncertainties in the geodetic measurements originate mainly from the limitations in the geodetic technique employed, i.e. terrestrial or space. Old nautical charts and topographic maps were based on terrestrial techniques, which are far less accurate than modern space techniques. In addition, the distribution of the positioning uncertainty is not expected to follow a consistent pattern across the chart (map). This is mainly due to the inconsistent datum distortion as well as the discrepancies in the measuring techniques in the subsequent chart (map) versions. The existing paper (and digitized) charts in many areas of the world were also based on old hydrographic surveying methods, for example the lead-line, which are far less accurate than modern techniques such as multibeam echo-sounding surveys. This creates inconsistent depth uncertainty across the chart. As uncertainties are propagated into the estimated transformation parameters, estimated positions and their covariance matrix, it is of utmost importance that they are properly modelled. This paper addresses the issue of uncertainty in hydrographic data and suggests ways to account for it.


Sign in / Sign up

Export Citation Format

Share Document