scholarly journals Determination of UT1 by VLBI

2009 ◽  
Vol 5 (H15) ◽  
pp. 216-216
Author(s):  
Harald Schuh ◽  
Johannes Boehm ◽  
Sigrid Englich ◽  
Axel Nothnagel

AbstractVery Long Baseline Interferometry (VLBI) is the only space geodetic technique which is capable of estimating the Earth's phase of rotation, expressed as Universal Time UT1, over time scales of a few days or longer. Satellite-observing techniques like the Global Navigation Satellite Systems (GNSS) are suffering from the fact that Earth rotation is indistinguishable from a rotation of the satellite orbit nodes, which requires the imposition of special procedures to extract UT1 or length of day information. Whereas 24 hour VLBI network sessions are carried out at about three days per week, the hour-long one-baseline intensive sessions (‘Intensives’) are observed from Monday to Friday (INT1) on the baseline Wettzell (Germany) to Kokee Park (Hawaii, U.S.A.), and from Saturday to Sunday on the baseline Tsukuba (Japan) to Wettzell (INT2). Additionally, INT3 sessions are carried out on Mondays between Wettzell, Tsukuba, and Ny-Alesund (Norway), and ultra-rapid e-Intensives between E! urope and Japan also include the baseline Metsähovi (Finland) to Kashima (Japan). The Intensives have been set up to determine daily estimates of UT1 and to be used for UT1 predictions. Because of the short duration and the limited number of stations the observations can nowadays be e-transferred to the correlators, or to a node close to the correlator, and the estimates of UT1 are available shortly after the last observation thus allowing the results to be used for prediction purposes.

2020 ◽  
Author(s):  
Dariusz Strugarek ◽  
Krzysztof Sośnica ◽  
Daniel Arnold ◽  
Adrian Jäggi ◽  
Grzegorz Bury ◽  
...  

<p>Numerous active low Earth orbiters (LEOs) and Global Navigation Satellite System (GNSS) satellites, including the Galileo constellation, are equipped with laser retroreflectors used for Satellite Laser Ranging (SLR). Moreover, most of LEOs are equipped with GNSS receivers for precise orbit determination. SLR measurements to LEOs, GNSS, and geodetic satellites vary in terms of the number of registered normal points (NPs) or registered satellite passes. In 2016-2018, SLR measurements to LEOs constituted 81% of all NPs and 59% of all registered satellite passes, whereas 10% of NPs and 30% of satellite passes, respectively, were assigned to GNSS. The remaining SLR measurements were completed by geodetic satellites, including LAGEOS-1/2, and LARES-1.</p><p>In this study, we show that the SLR observations to Galileo, passive geodetic and active LEO satellites together with precise GNSS-based orbits of LEOs and Galileo, can be used for the determination of global geodetic parameters, such as geocenter coordinates (GCC) and Earth rotation parameters (ERPs), i.e. pole coordinates, and length-of-day parameter.</p><p>GCC are typically determined using SLR observations to passive geodetic satellites, such as LAGEOS-1/2. Also, the SLR observations to LAGEOS-1/2 together with GNSS and Very Long Baseline Interferometry data are used for the determination of ERPs. Here, we use SLR observations to Galileo, LAGEOS-1/2, LARES-1, Sentinel-3A, SWARM-A/B/C, TerraSAR-X, Jason-2, GRACE-A/B satellites to investigate whether they can be applied for the reference frame realization and for deriving high-quality global geodetic parameters.</p><p>We present various types of solutions to investigate the best solution set-up. The studied solutions differ in terms of solution lengths, the combination of different sets of satellites and the relative weights for the variance scaling factors of technique and satellite-specific normal equations. We compare our results with the standard LAGEOS-based solutions, the combined EOP-14-C04 products and show the consistency of the results.</p>


2019 ◽  
Vol 11 (3) ◽  
pp. 228 ◽  
Author(s):  
Xingxing Li ◽  
Hongbo Lv ◽  
Fujian Ma ◽  
Xin Li ◽  
Jinghui Liu ◽  
...  

It is widely known that in real-time kinematic (RTK) solution, the convergence and ambiguity-fixed speeds are critical requirements to achieve centimeter-level positioning, especially in medium-to-long baselines. Recently, the current status of the global navigation satellite systems (GNSS) can be improved by employing low earth orbit (LEO) satellites. In this study, an initial assessment is applied for LEO constellations augmented GNSS RTK positioning, where four designed LEO constellations with different satellite numbers, as well as the nominal GPS constellation, are simulated and adopted for analysis. In terms of aforementioned constellations solutions, the statistical results of a 68.7-km baseline show that when introducing 60, 96, 192, and 288 polar-orbiting LEO constellations, the RTK convergence time can be shortened from 4.94 to 2.73, 1.47, 0.92, and 0.73 min, respectively. In addition, the average time to first fix (TTFF) can be decreased from 7.28 to 3.33, 2.38, 1.22, and 0.87 min, respectively. Meanwhile, further improvements could be satisfied in several elements such as corresponding fixing ratio, number of visible satellites, position dilution of precision (PDOP) and baseline solution precision. Furthermore, the performance of the combined GPS/LEO RTK is evaluated over various-length baselines, based on convergence time and TTFF. The research findings show that the medium-to-long baseline schemes confirm that LEO satellites do helpfully obtain faster convergence and fixing, especially in the case of long baselines, using large LEO constellations, subsequently, the average TTFF for long baselines has a substantial shortened about 90%, in other words from 12 to 2 min approximately by combining with the larger LEO constellation of 192 or 288 satellites. It is interesting to denote that similar improvements can be observed from the convergence time.


Author(s):  
Giampiero Sindoni ◽  
Claudio Paris ◽  
Cristian Vendittozzi ◽  
Erricos C. Pavlis ◽  
Ignazio Ciufolini ◽  
...  

Satellite Laser Ranging (SLR) makes an important contribution to Earth science providing the most accurate measurement of the long-wavelength components of Earth’s gravity field, including their temporal variations. Furthermore, SLR data along with those from the other three geometric space techniques, Very Long Baseline Interferometry (VLBI), Global Navigation Satellite Systems (GNSS) and DORIS, generate and maintain the International Terrestrial Reference Frame (ITRF) that is used as a reference by all Earth Observing systems and beyond. As a result we obtain accurate station positions and linear velocities, a manifestation of tectonic plate movements important in earthquake studies and in geophysics in general. The “geodetic” satellites used in SLR are passive spheres characterized by very high density, with little else than gravity perturbing their orbits. As a result they define a very stable reference frame, defining primarily and uniquely the origin of the ITRF, and in equal shares, its scale. The ITRF is indeed used as “the” standard to which we can compare regional, GNSS-derived and alternate frames. The melting of global icecaps, ocean and atmospheric circulation, sea-level change, hydrological and internal Earth-mass redistribution are nowadays monitored using satellites. The observations and products of these missions are geolocated and referenced using the ITRF. This allows scientists to splice together records from various missions sometimes several years apart, to generate useful records for monitoring geophysical processes over several decades. The exchange of angular momentum between the atmosphere and solid Earth for example is measured and can be exploited for monitoring global change. LARES, an Italian Space Agency (ASI) satellite, is the latest geodetic satellite placed in orbit. Its main contribution is in the area of geodesy and the definition of the ITRF in particular and this presentation will discuss the improvements it will make in the aforementioned areas.


Author(s):  
Oleg Odalović ◽  
Danilo Joksimović ◽  
Dušan Petković ◽  
Marko Stanković ◽  
Sanja Grekulović

Within this paper, we evaluated the quality of three Global Geopotential Models entitled: EGM96,EGM2008, and GOCO05c. The models were evaluated by using 1001 terrestrial discrete values ofheight anomalies determined by Global Navigation Satellite Systems and normal heights, which weconsidered to be true values within this research. In addition to the quality evaluation, we tailoredthe models by using more than 80000 free air anomalies. The results obtained from the evaluationand tailoring indicate that by using the GOCO05c it is possible to determine a set of anomaly heightsacross Serbia, which are in agreement with terrestrial values with an average value of -7 cm, thestandard deviation of ±9 cm and with the range of 44 cm.


Author(s):  
J. J. Hutton ◽  
N. Gopaul ◽  
X. Zhang ◽  
J. Wang ◽  
V. Menon ◽  
...  

For almost two decades mobile mapping systems have done their georeferencing using Global Navigation Satellite Systems (GNSS) to measure position and inertial sensors to measure orientation. In order to achieve cm level position accuracy, a technique referred to as post-processed carrier phase differential GNSS (DGNSS) is used. For this technique to be effective the maximum distance to a single Reference Station should be no more than 20 km, and when using a network of Reference Stations the distance to the nearest station should no more than about 70 km. This need to set up local Reference Stations limits productivity and increases costs, especially when mapping large areas or long linear features such as roads or pipelines. <br><br> An alternative technique to DGNSS for high-accuracy positioning from GNSS is the so-called Precise Point Positioning or PPP method. In this case instead of differencing the rover observables with the Reference Station observables to cancel out common errors, an advanced model for every aspect of the GNSS error chain is developed and parameterized to within an accuracy of a few cm. The Trimble Centerpoint RTX positioning solution combines the methodology of PPP with advanced ambiguity resolution technology to produce cm level accuracies without the need for local reference stations. It achieves this through a global deployment of highly redundant monitoring stations that are connected through the internet and are used to determine the precise satellite data with maximum accuracy, robustness, continuity and reliability, along with advance algorithms and receiver and antenna calibrations. <br><br> This paper presents a new post-processed realization of the Trimble Centerpoint RTX technology integrated into the Applanix POSPac MMS GNSS-Aided Inertial software for mobile mapping. Real-world results from over 100 airborne flights evaluated against a DGNSS network reference are presented which show that the post-processed Centerpoint RTX solution agrees with the DGNSS solution to better than 2.9 cm RMSE Horizontal and 5.5 cm RMSE Vertical. Such accuracies are sufficient to meet the requirements for a majority of airborne mapping applications.


Author(s):  
Zbigniew Siejka

The main aim of this work is research on the use of satellite positioning GNSS – RTK / RTN techniques to estimate the trajectory of a hydrographic boat. Modern hydrographic boat is the carrier of advanced bathymetry system, integral with GNSS positioning techniques. The key elements of the correct execution of the hydroacoustic survey are two elements: the height of the water surface and precise determination of the position in the moment of performing depth measurement. Integrated Bathymetric System (ZSB) is installed on a floating platform which is in constant motion. To obtain correct results of the hydroacoustic survey, it is necessary to know the precise (3D) position of the platform. In this paper the author presented his own research on the precise determination of accurate and reliable trajectory of a boat. The proposed method uses Real Time Kinematic (RTK) techniques of satellite positioning GNSS (Global Navigation Satellite Systems). The article presents examples of the results obtained during the research work at the largest Polish river.


Author(s):  
J. J. Hutton ◽  
N. Gopaul ◽  
X. Zhang ◽  
J. Wang ◽  
V. Menon ◽  
...  

For almost two decades mobile mapping systems have done their georeferencing using Global Navigation Satellite Systems (GNSS) to measure position and inertial sensors to measure orientation. In order to achieve cm level position accuracy, a technique referred to as post-processed carrier phase differential GNSS (DGNSS) is used. For this technique to be effective the maximum distance to a single Reference Station should be no more than 20 km, and when using a network of Reference Stations the distance to the nearest station should no more than about 70 km. This need to set up local Reference Stations limits productivity and increases costs, especially when mapping large areas or long linear features such as roads or pipelines. &lt;br&gt;&lt;br&gt; An alternative technique to DGNSS for high-accuracy positioning from GNSS is the so-called Precise Point Positioning or PPP method. In this case instead of differencing the rover observables with the Reference Station observables to cancel out common errors, an advanced model for every aspect of the GNSS error chain is developed and parameterized to within an accuracy of a few cm. The Trimble Centerpoint RTX positioning solution combines the methodology of PPP with advanced ambiguity resolution technology to produce cm level accuracies without the need for local reference stations. It achieves this through a global deployment of highly redundant monitoring stations that are connected through the internet and are used to determine the precise satellite data with maximum accuracy, robustness, continuity and reliability, along with advance algorithms and receiver and antenna calibrations. &lt;br&gt;&lt;br&gt; This paper presents a new post-processed realization of the Trimble Centerpoint RTX technology integrated into the Applanix POSPac MMS GNSS-Aided Inertial software for mobile mapping. Real-world results from over 100 airborne flights evaluated against a DGNSS network reference are presented which show that the post-processed Centerpoint RTX solution agrees with the DGNSS solution to better than 2.9 cm RMSE Horizontal and 5.5 cm RMSE Vertical. Such accuracies are sufficient to meet the requirements for a majority of airborne mapping applications.


2012 ◽  
Vol 9 ◽  
pp. 63-76 ◽  
Author(s):  
Michal Kačmařík ◽  
Lukáš Rapant

Paper is focused on GNSS meteorology which is generally used for the determination of water vapour distribution in the atmosphere from GNSS measurements. Water vapour in the atmosphere is an important parameter which influences the state and development of the weather. At first, the paper presents basics of the GNSS meteorology and tomography of the atmosphere and subsequently introduces a new GNSS tomography method which doesn't require an extensive network of GNSS receivers, but uses only a few receivers situated in a line. After a theoretical concept describing this method and used mathematical background, the results from a real experiment are shown and discussed. Unfortunately the results indicate that presented method is not able to provide credible outputs. Possibly the main problem lies in an insufficient number of available signals from current global navigation satellite systems (GPS and GLONASS) where the improvement could be expected after the start of Galileo and Compass. Potential ways how to improve the results without increasing the number of satellites are outlined in the last section.


2018 ◽  
Vol 11 (6) ◽  
pp. 3511-3522 ◽  
Author(s):  
Nan Ding ◽  
Shubi Zhang ◽  
Suqin Wu ◽  
Xiaoming Wang ◽  
Allison Kealy ◽  
...  

Abstract. The determination of the distribution of water vapor in the atmosphere plays an important role in the atmospheric monitoring. Global Navigation Satellite Systems (GNSS) tomography can be used to construct 3-D distribution of water vapor over the field covered by a GNSS network with high temporal and spatial resolutions. In current tomographic approaches, a pre-set fixed rectangular field that roughly covers the area of the distribution of the GNSS signals on the top plane of the tomographic field is commonly used for all tomographic epochs. Due to too many unknown parameters needing to be estimated, the accuracy of the tomographic solution degrades. Another issue of these approaches is their unsuitability for GNSS networks with a low number of stations, as the shape of the field covered by the GNSS signals is, in fact, roughly that of an upside-down cone rather than the rectangular cube as the pre-set. In this study, a new approach for determination of tomographic fields fitting the real distribution of GNSS signals on different tomographic planes at different tomographic epochs and also for discretization of the tomographic fields based on the perimeter of the tomographic boundary on the plane and meshing techniques is proposed. The new approach was tested using three stations from the Hong Kong GNSS network and validated by comparing the tomographic results against radiosonde data from King's Park Meteorological Station (HKKP) during the one month period of May 2015. Results indicated that the new approach is feasible for a three-station GNSS network tomography. This is significant due to the fact that the conventional approaches cannot even solve a network tomography from a few stations.


Sign in / Sign up

Export Citation Format

Share Document